In this article, the application of silica monoliths with bimodal pore structure (macro and mesopores) is described for the chromatographic analysis of biomolecules including peptides, proteins, and antibodies.
In this article, the application of silica monoliths with bimodal pore structure (macro and mesopores) is described for the chromatographic analysis of biomolecules including peptides, proteins, and antibodies.
In this article, the application of silica monoliths with bimodal pore structure (macro and mesopores) is described for the chromatographic analysis of biomolecules including peptides, proteins, and antibodies.
What are the characteristics and relevant considerations for the development and validation of a stability-indicating method?
The development of a microfabricated comprehensive GC that can be used as a portable measurement device.
The different aspects of food metabolomics are described using tomato taste as an example.
An SPE procedure is described that isolates both psilocybin and psilocin from urine samples for LC–MS-MS analysis.
This article compares the performance of wide-pore silica monolithic, sub-2µm FPP, and SPP columns, addresses the question of whether 1000 Å or 400 Å SPP columns are more suitable for reversed-phase LC-type protein separations, and presents a kinetic performance comparison of different columns.
Some might consider gas chromatography (GC) a mature technique. However, several substantial advances in GC technology in the past few years have proven that there is still room for innovation.
The isotopic profile of a material refers to the ratios of the stable isotopes of elements contained within, such as 2H/1H, 13C/12C, and 18O/16O. Biological, chemical, and physical processes cause variations in the ratios of stable isotopes; analysis of a material for its distinctive isotopic signature can thus be used to reveal information about its history. Isotope ratio mass spectrometry (IRMS) is a technique used to measure the relative abundance of isotopes in materials. Forensic investigators have used IRMS to measure a variety of materials, such as drugs, explosives, food, and human remains. In a recent web seminar, Lesley Chesson, the president of IsoForensics, Inc., explained how IRMS works and discussed the use of IRMS in forensic science, illustrating her discussion with several case examples.
Detection, analysis, and characterization of low-abundant metabolites remain an unresolved problem in metabolic studies. In this study, we report a novel approach to address this challenge. The current methodology is derived from the predictive multiple reaction monitoring (pMRM) mode available on triple-quadrupole linear ion trap mass spectrometry (MS) systems. The pMRM mode offers the highest sensitivity among various acquisition modes for studying trace levels of metabolites of the herbicide clomazone in plants. Additionally, this method allows for the identification of positional isomers of metabolites.
This review will provide a brief introduction to active flow technology (AFT) with a particular focus on improvements in separation performance that can be achieved when using these columns and coupling with liquid chromatography–mass spectrometry (LC–MS).
Miniaturized separation techniques are advantageous for the analysis of illicit drugs and new psychoactive substances.
Miniaturized separation techniques are advantageous for the analysis of illicit drugs and new psychoactive substances.
The development of a microfabricated comprehensive GC that can be used as a portable measurement device.
Environmental sample analysis by large-volume injection (LVI) in combination with liquid chromatography–tandem mass spectrometry (LC–MS-MS) is described for polar and nonpolar analytes in both aqueous samples and organic extracts.
Environmental sample analysis by large-volume injection (LVI) in combination with liquid chromatography–tandem mass spectrometry (LC–MS-MS) is described for polar and nonpolar analytes in both aqueous samples and organic extracts.
On October 21, 2014, University of Tennessee Distinguished Scientist Georges Andre Guiochon succumbed to neuromuscular failure caused by post-polio syndrome. Here, we pay tribute to his remarkable career and life.
Sustainability concerns are renewing interest in SFC, often as a substitute for HPLC. With the broader application of SFC, we need a better understanding of selectivity in SFC, where stationary phase classification is not well established. This study assessed and measured the selectivity differences afforded by three prototype SFC phases.
On October 21, 2014, University of Tennessee Distinguished Scientist Georges Andre Guiochon succumbed to neuromuscular failure caused by post-polio syndrome. Here, we pay tribute to his remarkable career and life.
The majority of the samples in this study and other studies show that a majority of compounds can be separated by the use of the three most common alcohols: IPA, CH3OH, and ethanol. Solubility becomes a crucial factor in preparative chromatography. Combinations of solvents can be used to improve solubility when the chosen co-solvent has poor solubility of the compound in question.
Determination and quantification of water contamination by phenols using the Dionex AutoTrace 280 SPE instrument.
The Wednesday afternoon session on multi-dimensional chromatography includes two talks from instrument vendors.
Here we describe a simple and robust high performance liquid chromatography–diode array detection (HPLC–DAD) method for the simultaneous determination of methotrexate (MTX) and sulphasalazine (SSZ) from plasma. MTX and SSZ are used in combination for the treatment of rheumatoid arthritis. Using two detector wavelengths, 304 nm for MTX and 358 nm for SSZ, we were able to selectively quantitate both analytes during the same chromatographic run. The method was validated using quality control samples for critical analytical performance criteria of recovery, reproducibility, selectivity, accuracy, and precision.
Here we describe a simple and robust high performance liquid chromatography–diode array detection (HPLC–DAD) method for the simultaneous determination of methotrexate (MTX) and sulphasalazine (SSZ) from plasma. MTX and SSZ are used in combination for the treatment of rheumatoid arthritis. Using two detector wavelengths, 304 nm for MTX and 358 nm for SSZ, we were able to selectively quantitate both analytes during the same chromatographic run. The method was validated using quality control samples for critical analytical performance criteria of recovery, reproducibility, selectivity, accuracy, and precision.