The Application Notebook
Thermo Scientific
This application note demonstrates the analysis of trypsindigested bovine serum albumin (BSA) using a Thermo Scientific Accucore 150-C18 (150 Å pore diameter) nanoLC column.
Accucore™ HPLC columns use Core Enhanced Technology™ to facilitate fast and high efficiency separations. Accucore 150-C18 has been further optimized for the analysis of biomolecules and protein digests by extending the pore size to 150 Å.
The increased pore diameter enables larger peptide fragments to diffuse into the particle and interact with the stationary phase more effectively, resulting in high resolution of these fragments.
Herein, we demonstrate the excellent performance of Accucore 150C18 nanoLC columns for the separation of digested BSA.
A 50 fmol/µL solution of digested BSA was prepared.
Thermo Scientific Dionex UltiMate 3000 RSLCnano LC system, coupled to a Thermo Scientific LTQ-Orbitrap XL mass spectrometer fitted with a Proxeon Nanospray Flex ion source.Accucore 150-C18 2.6 µm, 75 µm i.d. × 150 mm nanoLC column (P/N 16126-157569). Thermo Scientific National Vials and Closures (P/N MSCERT4000-34W).
The sample was loaded directly on the column (1 µL injection volume) through sample loop at gradient start.
Flow rate: 300 nL/min; A: 0.1 % formic acid in water B: 80:20 acetonitrile: water (4–40% B gradient over 30 min; ramp to 95% B over 2 min; hold for 2 min; drop to 4% B over 1 min; hold for 4 min).
Elution of tryptic peptides using the conditions described above was achieved within 36 min (Figure 1). Triplicate analyses showed excellent retention time reproducibility for a set of 12 peptides, with % RSD values below 0.14%. Figure 2 shows the extracted ion chromatograms (EIC) of a subset of the peptides monitored. In all cases the peak shapes were found to be excellent, with minimal peak tailing. A peak capacity value of 200 was obtained (1), showing the high resolution power of Accucore 150-C18 nanoLC columns.
Figure 1: Base peak chromatogram of 50 fmol of digested BSA loaded on an Accucore 150-C18 nanoLC column, 75 µm i.d.ձ50 mm.
Accucore 150-C18 nanoLC columns are an ideal choice for complex proteomic samples, featuring excellent resolution power and runtorun reproducibility.
Figure 2: EIC of a set of eight peptides.
(1) X. Wang, Anal. Chem.78(10), 3406–3416 (2006).
Thermo Fisher Scientific
Tudor Road, Manor Park, Runcorn, Cheshire WA7 1TA, UK
tel. +44 (0) 1928 534110
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.