The Application Notebook
Metabolomics, the study of small molecule metabolites that are found within a biological sample, is an emerging field of study. Progress in this field depends upon technological advancement in the fields of LC–MS and separation technology.
Bhavana Verma1, Itaru Yazawa1, Oscar Yanes2, Ralf Tautenhahn2, Gary J. Patti2, and Gary Siuzdak2, 1Imtakt USA and2 The Scripps Research Institute
Metabolomics, the study of small molecule metabolites that are found within a biological sample, is an emerging field of study. Progress in this field depends upon technological advancement in the fields of LC–MS and separation technology. In untargeted metabolomics, simultaneous detection of the largest number of metabolites is desired. Reversed phase C18 columns are generally used for this type to study, however they provide limited retention of polar compounds. In this paper, we compare the retention of 31 model compounds characterized by different polarities using a Cogent Bidentate C18, a Waters XBridge C18, and an Imtakt Scherzo SM-C18 column. The Imtakt Scherzo column showed the best retention of polar compounds, with only 10% of the polar compounds eluting within the first 2 min as compared to 22% by the Cogent column and 45% by the Waters column.
All data were collected on an HPLC system coupled to mass spec detection. The mobile phase used for the column comparison of the 31 model compounds was A = water, 0.1% formic acid, B = acetonitrile, 0.1% formic acid. The linear gradient used started at 100%A (0–5 min) and finished at 100%B (35–40 min) (see Figure 1).
Figure 1: 1. alanine 2. N,N-dimethylglycine 3. serine 4. fumaric acid 5. succinic acid 6. cysteine (Bradykinin fragment 1-5) 7. oxaloacetic acid 8. Gly-Gly 9. malic acid 10. alpha-ketoglutarate 11. citric acid 12. 2-methylhippuric acid 13. gamma-D-glutamylglycine 14. salbutomal 15. AMP (bradykinin fragment 1-8) 16. ribo-avin 17. Phe-Gly-Phe-Gly XBridge 18 (150 x 1.0 mm) 18. s-(p-nitrobenzyl)glutathione Scherzo SM-C18, 150 x 2 mm A: 0.1% formic acid in ater B: 0.1% formic acid in acetonitrile The linear gradient elution used started at 100% A (time 0-5 min) and finished at 100% B (35-40 min) 250 uL/min, room temp. ESI-MS in positive and negative ionization mode 19. s-(p-azidophenacyl)glutathione 20. Taurocholic acid 21. O-beta-D-glucuronosyl-naphthol AS-BI 22. Leucine enkephalin 23. Arg-Pro-Pro-Gly-Phe 24. Reserpine 25. GSSG 26. Arg-Lys-Asp-Val-Tyr 27. Coenzyme A 12. 2-methylhippuric acid 28. Acetyl CoA 29. Ala-Ser- Thr-Thr-Thr-Asn-Tyr-Thr (peptide T) 30. Arg-Pro-ProGly-Phe-Ser-Pro-Phe 31. Tyr-Tyr-Tyr-Tyr-Tyr-Tyr 17. Phe-Gly-Phe-Gly XBridge 18 (150 x 1.0 mm) 18. s-(p-nitrobenzyl)glutathione Scherzo SM-C18, 150 x 2 mm A: 0.1% formic acid in ater B: 0.1% formic acid in acetonitrile The linear gradient elution used started at 100% A (time 0-5 min) and finished at 100% B (35-40 min) 250 uL/min, room temp. ESI-MS in positive and negative ionization mode
The study shows that Imtakt's Scherzo column, consisting of a combination of C18, anion, and cation ligands, outperforms other C18 columns in the retention of polar metabolites. This result is important in the advancement of untargeted metabolomics, as traditional C18 columns struggle to retain polar compounds and can limit the detection of a wide polarity range of metabolites.
(1) Oscar Yanes, Ralf Tautenhahn, Gary J. Patti, and Gary Siuzdak, Analytical Chemistry 83(6), 2152–2161 (2011).
Imtakt USA
6703 Germantown Avenue, Suite 240, Philadelphia, PA 19119
tel. (888) 456-HPLC, (215) 665-8902, fax (501) 646-3497
Email: info@imtaktusa.com, Website: www.imtaktusa.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.