For lurasidone treatment adherence testing, an untargeted high-resolution mass spectrometry method was employed, using known positive human urine samples to identify the lurasidone metabolites and their relative abundance in urine.
Marijuana, the common or slang term for cannabis in its herbal form, is one of the most widely used illicit drugs in the world.
The biologically active form of vitamin D is an important analytical target in both research and clinical practice.
Enzyme immunoassay (EIA) is a conventional drug screening technique, but it can be limited by cross-reactivity that can lead to high false positive rates.
Marijuana, the common or slang term for cannabis in its herbal form, is one of the most widely used illicit drugs in the world.
This study focuses on United States Environmental Protection Agency (US EPA) Method 524.3 for volatile organic compounds (VOCs) in water using gas chromatography–mass spectrometry (GC–MS).
The regulatory and practical issues that surround allergenic fragrance use within cosmetics and cleaning products are explored in this article.
High performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) is a potential method of choice for the analysis of carbohydrates.
This article gives an up-to-date commentary on chiral liquid chromatography coupled with mass spectrometry for the determination of pharmacologically active chiral compounds (cPACs) (including illicit drugs) in environmental matrices. Several applications are discussed to demonstrate the benefits of performing environmental analysis of cPACs at the enantiomeric level. Finally, future perspectives in this rapidly developing field of research are outlined.
This article gives an up-to-date commentary on chiral liquid chromatography coupled with mass spectrometry for the determination of pharmacologically active chiral compounds (cPACs) (including illicit drugs) in environmental matrices. Several applications are discussed to demonstrate the benefits of performing environmental analysis of cPACs at the enantiomeric level. Finally, future perspectives in this rapidly developing field of research are outlined.
This article gives an up-to-date commentary on chiral liquid chromatography coupled with mass spectrometry for the determination of pharmacologically active chiral compounds (cPACs) (including illicit drugs) in environmental matrices. Several applications are discussed to demonstrate the benefits of performing environmental analysis of cPACs at the enantiomeric level. Finally, future perspectives in this rapidly developing field of research are outlined.
This article gives an up-to-date commentary on chiral liquid chromatography coupled with mass spectrometry for the determination of pharmacologically active chiral compounds (cPACs) (including illicit drugs) in environmental matrices. Several applications are discussed to demonstrate the benefits of performing environmental analysis of cPACs at the enantiomeric level. Finally, future perspectives in this rapidly developing field of research are outlined.
This article gives an up-to-date commentary on chiral liquid chromatography coupled with mass spectrometry for the determination of pharmacologically active chiral compounds (cPACs) (including illicit drugs) in environmental matrices. Several applications are discussed to demonstrate the benefits of performing environmental analysis of cPACs at the enantiomeric level. Finally, future perspectives in this rapidly developing field of research are outlined.
Analyzing functional foods reveals numerous health benefits. These foods are rich in bioactive compounds that go beyond basic nutrition, boosting the immune system and improving overall wellness. However, analyzing these compounds can be challenging. This article discusses AI algorithms to support automated method development for liquid chromatography, simplifying the process, enhancing labor efficiency, and ensuring precise results, making it accessible to non-experts for tea analysis.
Accurate steroid measurement is essential for the diagnosis of various disorders, for example in sexual differentiation or gonadal function.
Explaining Silyl Ether Formation (SEF) in Supercritical Fluid Chromatography (SFC)
The authors show that the loadability and throughput of ionizable compounds can be enhanced by using hybrid packings.
A look at the role of system suitability tests (SSTs) during performance qualification (PQ).
To reach satisfactory results in terms of accurate retention time prediction, new in silico optimization approaches must be considered.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
The modern analytical laboratory generates enormous amounts of data. These data are typically stored in vendor-specific, proprietary file formats
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.
In this study, we describe a simple and rapid liquid chromatography–mass spectrometry (LC–MS) method for the evaluation of caffeine, taurine, and aspartame in teas, soft drinks, and energy drinks using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI)-MS detection and multiple injections in a single experimental run (MISER) analysis.