Drug substance development requires a range of analytical methods to be developed to generate process knowledge and to support in-process and release testing throughout a synthetic sequence. This article describes practical examples of a wide variety of transfer challenges and our remediation strategy.
A simple ultrahigh-performance liquid chromatography high resolution tandem mass spectrometry (UHPLC−HRMS/MS) method to determine seventeen phytocannabinoids was developed and validated for Cannabis plants, resins and their extracts, and oils. The analysis was challenging because of the complexity of matrices, the large differences in the concentration of phytocannabinoids and their pattern in various cultivars, and the structural similarity of these analytes.
A simple ultrahigh-performance liquid chromatography high resolution tandem mass spectrometry (UHPLC−HRMS/MS) method to determine seventeen phytocannabinoids was developed and validated for Cannabis plants, resins and their extracts, and oils. The analysis was challenging because of the complexity of matrices, the large differences in the concentration of phytocannabinoids and their pattern in various cultivars, and the structural similarity of these analytes.
A simple ultrahigh-performance liquid chromatography high resolution tandem mass spectrometry (UHPLC−HRMS/MS) method to determine seventeen phytocannabinoids was developed and validated for Cannabis plants, resins and their extracts, and oils. The analysis was challenging because of the complexity of matrices, the large differences in the concentration of phytocannabinoids and their pattern in various cultivars, and the structural similarity of these analytes.
The challenges that arise during cannabis metabolomics analysis using ultrahigh-performance reversed-phase liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC–reversed-phase–HRMS/MS) are presented.
A simple ultrahigh-performance liquid chromatography high resolution tandem mass spectrometry (UHPLC−HRMS/MS) method to determine seventeen phytocannabinoids was developed and validated for Cannabis plants, resins and their extracts, and oils. The analysis was challenging because of the complexity of matrices, the large differences in the concentration of phytocannabinoids and their pattern in various cultivars, and the structural similarity of these analytes.
Chicago, Illinois, USA, will host the 71st annual Pittcon conference and exposition. Thosands of separation scientists from across the globe and from a wide spectrum of industries will gather at the McCormick Place convention centre to discuss, investigate, and assess the latest scientific advances in technology and instrumentation.
The chemistry of samples analyzed using gel permeation chromatography/size-exclusion chromatography/gel filtration chromatography (GPC/SEC/GFC) is very diverse. Different chemistries of stationary phases are required to allow for true size separation. Several types of materials are available, all of which have their advantages and limitations. While silica‑based stationary phases are most common in high performance liquid chromatography (HPLC), for macromolecules polymer-based phases are popular.
PCDDs, PCDFs, and PCBs are toxic compounds categorized as POPs and are ubiquitous throughout the world. Detecting trace levels of PCDD and PCDF is important to monitor food supplies and to ensure industrial emissions meet regulatory standards. In line with the ongoing innovation in dioxin analysis technology, the US EPA is currently evaluating a new method-APGC–MS/MS-for PCDD and PCDF confirmatory analysis. Joe Romano and Douglas Stevens from Waters Corporation discuss the benefits of this new method.
PCDDs, PCDFs, and PCBs are toxic compounds categorized as POPs and are ubiquitous throughout the world. Detecting trace levels of PCDD and PCDF is important to monitor food supplies and to ensure industrial emissions meet regulatory standards. In line with the ongoing innovation in dioxin analysis technology, the US EPA is currently evaluating a new method-APGC–MS/MS-for PCDD and PCDF confirmatory analysis. Joe Romano and Douglas Stevens from Waters Corporation discuss the benefits of this new method.
This article describes possible sources of error that may contribute to significant inaccuracy in peptide assay methods: The fi ltration material (cellulose) used in sample clean up and the vial material (glass and plastic) used in LC analysis. This study is based on ?-endorphin but has relevance for most peptide assays.
Torion Technologies Inc.
A simple and sensitive high performance liquid chromatography (HPLC) method with ultra-violet (UV) detection has been developed for the analysis of phenylurea herbicides.
The fundamental mechanisms of band broadening are usually introduced to students through the van Deemter equation. Dimensional analysis of this equation can give physical meaning to the equation coefficients and enhance our understanding relative to qualitative descriptions. This approach can also guide improvements to future liquid chromatography (LC) column designs.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
A method was developed for the molecular weight characterization of heterogeneous polymer mixtures, such as heparins and glatiramer acetate, noting that single molecular structures are not adequate for creating a molecular weight calibration curve. That limitation is overcome in this work, which demonstrates method validation and application to process samples.
Paper-based sorptive phases are promising tools in sample preparation because of their high surface-to-volume ratio, porosity, and versatility. This article discusses the synthesis of paper-based sorptive phases by dip coating. This procedure has allowed a wide variety of phases coated with polymers, nanoparticles, and their combination to be synthesized. This article presents the synthesis, types of coatings, and extraction devices, to highlight the versatility and potential of these materials to the analytical community, particularly for sample preparation.
This article outlines the relevance of extraction techniques, including exhaustive and non-exhaustive ones, in onsite strategies.
This article outlines the relevance of extraction techniques, including exhaustive and non-exhaustive ones, in onsite strategies.
The “State-of-the-Art in Capillary Liquid Chromatography” panel discussion at the 43rd International Symposium on Capillary Chromatography (ISCC 2019) in Fort Worth, Texas, USA, was a thoughtful dialogue on current challenges and potential future directions in the field. The session included a general overview of the current state of the field, key drawbacks preventing widespread use of capillary liquid chromatography (LC) columns, and how these challenges might be overcome. In this article, we highlight some of the common themes that were discussed as part of this panel.
The return of the in-person HPLC Conference was welcomed by the separation science community. There were a lot of developments to share.
This information is supplementary to the article “The Effect of Carrier Liquid Composition on the Molecular Properties of Caseinate Solutions Studied by AF4” that was published in the March 2020 issue of LCGC Europe.
This information is supplementary to the article “The Effect of Carrier Liquid Composition on the Molecular Properties of Caseinate Solutions Studied by AF4” that was published in the March 2020 issue of LCGC Europe.
In this extended special feature to celebrate the 35th anniversary edition of LCGC Europe, key opinion leaders from the separation science community explore contemporary trends in separation science and identify possible future developments.
A simple and fast ion-pair chromatography method to detect sodium alkyl sulphates in environmental samples using conductivity detection is described.
In this article, we examine how tandem and tandem hybrid mass spectrometry has opened up new frontiers already. We go further and examine how lesser-known experiments are breaking new ground, with alternative fragmentation techniques, as well as the addition of extra levels of orthogonality by parallel separations techniques.