Higher Order Mass Spectrometry Techniques Applied to Biopharmaceuticals
The use of superficially porous particles (SPPs) for modern high performance liquid chromatography (HPLC) is now very common. Initially, SPPs rose as an alternative to sub-2-µm fully porous particles (FPPs). In recent years, many column manufacturers have developed 2-µm and smaller SPP-based products. This article investigates the practical utility of these smaller SPP designs.
An increasing range of per- and polyfluoroalkyl substances (PFAS) has been found migrating from food contact material into food. This article establishes an integrated analytical approach combining HPLC–MS/MS and GC–MS/MS to detect 36 such PFAS.
The analysis of contaminants found in environmental waters and originating from personal care products using metalorganic frameworks (MOFs) combined with liquid chromatography (LC) is described. This work expands the use of MOFs from gas chromatography to LC and also meets the requirements of green analytical chemistry.
This study of PAHs makes it easy to compare this microextraction procedure to conventional approaches and to other procedures using magnetic composites.
This study of PAHs makes it easy to compare this microextraction procedure to conventional approaches and to other procedures using magnetic composites.
In this study, the analysis of contaminants found in environmental waters and originating from personal care products is addressed using metalorganic frameworks (MOFs) in combination with liquid chromatography (LC). This work expands the use of MOFs from gas chromatography to LC and also meets the requirements of green analytical chemistry.
The analysis of contaminants found in environmental waters and originating from personal care products using metalorganic frameworks (MOFs) combined with liquid chromatography (LC) is described. This work expands the use of MOFs from gas chromatography to LC and also meets the requirements of green analytical chemistry.
A look back at this innovator’s career and her efforts to develop and popularize gas chromatography (GC), particularly for biomedical research.
In this “Equipment Roundup,” the editors of LCGC International present SCIEX’s ZenoTOF 7600+ System and Fraunhofer Institute for Integrated Circuits’ nanoSPECTRAL chip.
A new type of analysis called “wide-selected ion monitoring (SIM)/MS2” scanning, is capable of screening for a wide range of DNA adducts (chemical modifications to genomic DNA). This method has successfully identified DNA adducts from carcinogen exposures and oxidative stress in human prostate and kidney tissues.
A new type of analysis called “wide-selected ion monitoring (SIM)/MS2” scanning, is capable of screening for a wide range of DNA adducts (chemical modifications to genomic DNA). This method has successfully identified DNA adducts from carcinogen exposures and oxidative stress in human prostate and kidney tissues.
A new type of analysis called “wide-selected ion monitoring (SIM)/MS2” scanning, is capable of screening for a wide range of DNA adducts (chemical modifications to genomic DNA). This method has successfully identified DNA adducts from carcinogen exposures and oxidative stress in human prostate and kidney tissues.
An important advantage of standardized methods is that they enable comparability between laboratories and across studies. In this work, the author used a standardized targeted kit to demonstrate the accuracy, sensitivity, and reproducibility of the approach, analyzing serum samples obtained from type 2 diabetes study subjects and healthy controls.
Splitless injections are sometimes necessary for trace analyses, where the analyst hopes to recover 100% of the analytes that are injected. Unfortunately, splitless injections can be challenging and using an imperfect method can lead to loss of analytes and poor peak shapes. The choice of inlet liner can have an impact on the data and one must consider the effects of geometry, packing, deactivation, and volume on introduction of analytes into the system. Other important inlet parameters to consider include inlet temperature, splitless hold time, and initial oven temperature.
Pharmaceutical excipients, such as polyethylene glycol-based polymers, must be tested for the presence of ethylene oxide (EtO) and 1,4-dioxane as part of a safety assessment, according to USP Chapter <228>.
Application of multivariate statistical analysis to a combined data set demonstrated that SIFT-MS discriminates premium quality beef from eight sensory defects, and, therefore, could be applied as an instrumental grading tool, obviating sensory panel grading.
Pharmaceutical excipients, such as polyethylene glycol-based polymers, must be tested for the presence of ethylene oxide (EtO) and 1,4-dioxane as part of a safety assessment, according to USP Chapter <228>.
The medicinal qualities of cannabinoids contained in hemp have been described in detail. Pain mitigation and reduced severity of nausea and seizures are just a few of the therapeutic benefits reported by medical cannabis patients. There is evidence that a combination of CBD, a host of other minor cannabinoids, and a complex array of terpenoids as contained in hemp oil may be the most beneficial, which is why CBD-rich oil for oral intake has become increasingly popular. The FDA has issued warning letters to firms that market unapproved new drugs allegedly containing CBD. As part of these actions, the cannabinoid content of some hemp products was determined and many were found to contain levels of CBD largely deviating from the label claim. Like cannabis, hemp oil can be analyzed easily and effectively for its cannabinoid content. This article highlights the use of a fast and simple HPLC–UV assay for separation and quantification of 11 important cannabinoids, including CBD in hemp oil.
The medicinal qualities of cannabinoids contained in hemp have been described in detail. Pain mitigation and reduced severity of nausea and seizures are just a few of the therapeutic benefits reported by medical cannabis patients. There is evidence that a combination of CBD, a host of other minor cannabinoids, and a complex array of terpenoids as contained in hemp oil may be the most beneficial, which is why CBD-rich oil for oral intake has become increasingly popular. The FDA has issued warning letters to firms that market unapproved new drugs allegedly containing CBD. As part of these actions, the cannabinoid content of some hemp products was determined and many were found to contain levels of CBD largely deviating from the label claim. Like cannabis, hemp oil can be analyzed easily and effectively for its cannabinoid content. This article highlights the use of a fast and simple HPLC–UV assay for separation and quantification of 11 important cannabinoids, including CBD in hemp oil.
This article is focused on the detailed qualitative analysis of the fatty acids and the unsaponifiable constituents of a vegetable oil derived from a food-industry waste product, namely lemon seeds.
Published methods for the determination of ibuprofen in biological fluids by liquid chromatography (LC)–UV or LC–mass spectrometry (MS)-MS have quantitation ranges consistent with the relatively high but typical ibuprofen dose (200–800 mg), generally having lower limits of quantitation in the low micrograms-per-milliliter range. For the analysis of plasma and synovial fluid samples from preclinical (miniature swine) studies utilizing a novel ibuprofen dosage form, LC–MS-MS methods were developed and validated over the 10–1000 ng/mL range. Ibuprofen undergoes biotransformation to ibuprofen acyl glucuronide and sublimes under routine bioanalytical sample handling conditions. Procedures were implemented to minimize the impact of these potential liabilities.
The potential of TD SEC for in situ analyses of thermoreversibly bonded polymers is discussed. TD SEC allows the evolution of the polymer’s molar mass distribution to be monitored during temperature-sensitive bonding and debonding reactions. Through quantitative evaluation of the chromatograms, the reaction-influencing parameters can be studied, which is crucial for the effective development of novel functional materials. By using TD SEC, the effect of polymer size and flexibility on the debonding temperatures of DA polymers was confirmed, their debonding and bonding ability studied, and the de-crosslinking of thermoreversibly cross-linked DA polymers assessed. TD SEC offers a versatile platform for a broad variety of different polymer materials and to assess a variety of different analytical questions.
The potential of TD SEC for in situ analyses of thermoreversibly bonded polymers is discussed. TD SEC allows the evolution of the polymer’s molar mass distribution to be monitored during temperature-sensitive bonding and debonding reactions. Through quantitative evaluation of the chromatograms, the reaction-influencing parameters can be studied, which is crucial for the effective development of novel functional materials. By using TD SEC, the effect of polymer size and flexibility on the debonding temperatures of DA polymers was confirmed, their debonding and bonding ability studied, and the de-crosslinking of thermoreversibly cross-linked DA polymers assessed. TD SEC offers a versatile platform for a broad variety of different polymer materials and to assess a variety of different analytical questions.
The potential of TD SEC for in situ analyses of thermoreversibly bonded polymers is discussed. TD SEC allows the evolution of the polymer’s molar mass distribution to be monitored during temperature-sensitive bonding and debonding reactions. Through quantitative evaluation of the chromatograms, the reaction-influencing parameters can be studied, which is crucial for the effective development of novel functional materials. By using TD SEC, the effect of polymer size and flexibility on the debonding temperatures of DA polymers was confirmed, their debonding and bonding ability studied, and the de-crosslinking of thermoreversibly cross-linked DA polymers assessed. TD SEC offers a versatile platform for a broad variety of different polymer materials and to assess a variety of different analytical questions.
The potential of TD SEC for in situ analyses of thermoreversibly bonded polymers is discussed. TD SEC allows the evolution of the polymer’s molar mass distribution to be monitored during temperature-sensitive bonding and debonding reactions. Through quantitative evaluation of the chromatograms, the reaction-influencing parameters can be studied, which is crucial for the effective development of novel functional materials. By using TD SEC, the effect of polymer size and flexibility on the debonding temperatures of DA polymers was confirmed, their debonding and bonding ability studied, and the de-crosslinking of thermoreversibly cross-linked DA polymers assessed. TD SEC offers a versatile platform for a broad variety of different polymer materials and to assess a variety of different analytical questions.
The potential of TD SEC for in situ analyses of thermoreversibly bonded polymers is discussed. TD SEC allows the evolution of the polymer’s molar mass distribution to be monitored during temperature-sensitive bonding and debonding reactions. Through quantitative evaluation of the chromatograms, the reaction-influencing parameters can be studied, which is crucial for the effective development of novel functional materials. By using TD SEC, the effect of polymer size and flexibility on the debonding temperatures of DA polymers was confirmed, their debonding and bonding ability studied, and the de-crosslinking of thermoreversibly cross-linked DA polymers assessed. TD SEC offers a versatile platform for a broad variety of different polymer materials and to assess a variety of different analytical questions.
Pressure tuning makes it easy to change the orthogonality in the 2D space.
Analyzing functional foods reveals numerous health benefits. These foods are rich in bioactive compounds that go beyond basic nutrition, boosting the immune system and improving overall wellness. However, analyzing these compounds can be challenging. This article discusses AI algorithms to support automated method development for liquid chromatography, simplifying the process, enhancing labor efficiency, and ensuring precise results, making it accessible to non-experts for tea analysis.