The authors provide suggestions for the sample pretreatment and analysis of aerosol particles including the use of on-line SFE–LC–GC–MS, GCXGC and LC–MS. Although each technique has its merits, the novel multidimensional systems and those integrating sample pretreatment with the final analysis proved to be valuable tools in aerosol analysis.
The authors provide suggestions for the sample pretreatment and analysis of aerosol particles including the use of on-line SFE–LC–GC–MS, GCXGC and LC–MS. Although each technique has its merits, the novel multidimensional systems and those integrating sample pretreatment with the final analysis proved to be valuable tools in aerosol analysis.
Terpenes contribute heavily to the senses of smell and taste and thus are integral to industries like herb and spice producers, essential oil manufacturers, cannabis growers and distributors, breweries, and distilleries, among countless others. Current terpene analysis is performed using gas chromatography–flame ionization detection (GC–FID) and GC–mass spectrometry (MS); however, baseline separation is needed for quantification because many terpenes of interest are isomers, which can lead to relatively long run times. Vacuum ultraviolet (VUV) spectroscopy can spectrally distinguish isomers and quantitatively deconvolve coeluting peaks, allowing for significant reduction in GC run time. This article outlines a method for the analysis of 21 terpenes in a variety of samples with a sub 9-min elution time.
Commercially available trypsin IMERs can digest proteins with high sequence coverage and robustness, facilitating online multidimensional LC–MS.
New separation techniques for the analysis of polar and ionic analytes have aroused great interest in the field of metabolomics and environmental investigation in the past two decades. Hydrophilic interaction liquid chromatography (HILIC) is a promising tool to address this challenge. HILIC separation is based on the polarity of analytes, which generally show stronger retention with increasing polarity according to the HILIC separation mechanism. Furthermore, the high content of organic solvent in the mobile phase leads to good ionization properties in the electrospray ionization (ESI), and consequently enhances the detection sensitivity by hyphenated mass spectrometry (MS) detector.
Microwave extraction becomes faster and easier with the new Milestone ETHOS X with its FastEX-24. This application note shows the use of Milestone technology for extraction of dioxins from environmental matrices, with emphasis on one of the most common challenge of this application: the carryover effect. The unique design of the FastEX-24 rotor with disposable glass vials allows easy and efficient dioxin extraction, and other organic pollutants, to be performed, avoiding any memory effect. The FastEX-24 simplifies the routine pollutants extraction process and provides superior productivity at lower costs.
Microwave extraction becomes faster and easier with the new Milestone ETHOS X with its FastEX-24. This application note shows the use of Milestone technology for extraction of dioxins from environmental matrices, with emphasis on one of the most common challenge of this application: the carryover effect. The unique design of the FastEX-24 rotor with disposable glass vials allows easy and efficient dioxin extraction, and other organic pollutants, to be performed, avoiding any memory effect. The FastEX-24 simplifies the routine pollutants extraction process and provides superior productivity at lower costs.
This application note describes the determination of the triphenylmethane dyes Malachite Green and Crystal Violet and their metabolites from the aquaculture samples brown trout, shrimp, and tuna using dispersive SPE (dSPE) with CHROMABOND QuEChERS mixes for sample clean-up.
This application note describes the determination of pharmaceuticals from serum using solid-phase extraction (SPE) with the hydrophilic-lipophilic balanced SPE phase CHROMABOND® HLB for analyte enrichment and for sample cleanup. The eluates from SPE are finally analyzed by HPLC–MS/MS on a NUCLEOSHELL® PFP core–shell phase.
This application note describes the determination of the triphenylmethane dyes Malachite Green and Crystal Violet and their metabolites from the aquaculture samples brown trout, shrimp, and tuna using dispersive SPE (dSPE) with CHROMABOND QuEChERS mixes for sample clean-up.
A hybrid HILIC–ion exchange column was used for the analysis of ultrashort-chain per- and polyfluoroalkyl substances (PFAS) compounds in environmental waters. This direct injection LC–MS method enables simultaneous measurement of ultrashort- chain, alternative, and legacy PFAS in potable and non-potable waters.
A hybrid HILIC–ion exchange column was used for the analysis of ultrashort-chain per- and polyfluoroalkyl substances (PFAS) compounds in environmental waters. This direct injection LC–MS method enables simultaneous measurement of ultrashort- chain, alternative, and legacy PFAS in potable and non-potable waters.
The benefits of an analytical quality by design (AQbD) approach to method development cannot be underestimated. The Column spoke to Changqin Hu and Xia Zhang from the National Institutes for Food Drug Control, in Beijing, China, about their work developing a dual-gradient elution stability-indicating method for cloxacillin within an AQbD framework.
The benefits of an analytical quality by design (AQbD) approach to method development cannot be underestimated. The Column spoke to Changqin Hu and Xia Zhang from the National Institutes for Food Drug Control, in Beijing, China, about their work developing a dual-gradient elution stability-indicating method for cloxacillin within an AQbD framework.
Commercially available trypsin IMERs can digest proteins with high sequence coverage and robustness, facilitating online multidimensional LC–MS.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
Paying attention to the details of mobile-phase preparation can have a big impact on the reproducibility of hydrophilic-interaction chromatography (HILIC) separations.
For decades the prevailing perception was that satisfactory re-equilibration of reversed-phase columns following gradient elution took a long time. In the early 2000s we showed that this perception was not well founded, and demonstrated that adequate re‑equilibration could be achieved in seconds. Recently, we have shown the same for HILIC columns. All of this work so far has been with small molecules. In this article, we present an overview of this work, and summarize the practical utility of it all.
Presenting a novel chromatographic modelling method to establish QbD-compliant comparative testing of eluent design spaces.
A high performance thin-layer chromatographic (HPTLC) method was developed for the determination of aflatoxin B1 in cereals.
Is that peak “pure”? How do I know if there might be something hiding under there?
The evolution of two-dimensional liquid chromatography (2D-LC) instruments along with improved software capabilities has transferred 2D-LC from the hands of experienced researchers to functioning analytical laboratories in the pharmaceutical industry. 2D-LC offers chromatographers novel solutions to problems ranging from analyzing complex samples requiring excessively large peak capacities to separating simple compounds that are difficult to resolve. Recent developments in 2D-LC and 2D-LC–MS have demonstrated the potential of this technique in practice and 2D-LC is set to become an essential tool in the pharmaceutical sector to address problems ranging from coelution, peak purity assessment, simultaneous achiral-chiral analysis, genotoxic impurities, and more.
Pharmaceutical research and development (R&D) organizations were early adopters who recognized the many benefits of UltraPerformance LC? (UPLC?) Technology including resolution, sensitivity, throughput, and productivity as compared to HPLC.
Chromatographic method development for pharmaceutical analysis can benefit from in silico steered serial coupling of column segments containing different stationary phases of varying length. Contrary to column coupling through trial and error, in stationary-phase optimized selectivity (SOS)-based chromatography the retention of all solutes is predicted for all possible column combinations allowing a rational selection of the optimal column combination. The possibilities of the strategy now surpass the initial usage in isocratic high performance liquid chromatography (HPLC) on dedicated commercial column segments, and allow applications in gradient-, green-, preparative-, and in supercritical fluid chromatography (SFC) on conventional column hardware. Current possibilities, pharmaceutical applications, a downloadable algorithm, and weaknesses of the approach are discussed to allow broader implementation of this methodology in separation science.
Chromatographic method development for pharmaceutical analysis can benefit from in silico steered serial coupling of column segments containing different stationary phases of varying length. Contrary to column coupling through trial and error, in stationary-phase optimized selectivity (SOS)-based chromatography the retention of all solutes is predicted for all possible column combinations allowing a rational selection of the optimal column combination. The possibilities of the strategy now surpass the initial usage in isocratic high performance liquid chromatography (HPLC) on dedicated commercial column segments, and allow applications in gradient-, green-, preparative-, and in supercritical fluid chromatography (SFC) on conventional column hardware. Current possibilities, pharmaceutical applications, a downloadable algorithm, and weaknesses of the approach are discussed to allow broader implementation of this methodology in separation science.
Chromatographic method development for pharmaceutical analysis can benefit from in silico steered serial coupling of column segments containing different stationary phases of varying length. Contrary to column coupling through trial and error, in stationary-phase optimized selectivity (SOS)-based chromatography the retention of all solutes is predicted for all possible column combinations allowing a rational selection of the optimal column combination. The possibilities of the strategy now surpass the initial usage in isocratic high performance liquid chromatography (HPLC) on dedicated commercial column segments, and allow applications in gradient-, green-, preparative-, and in supercritical fluid chromatography (SFC) on conventional column hardware. Current possibilities, pharmaceutical applications, a downloadable algorithm, and weaknesses of the approach are discussed to allow broader implementation of this methodology in separation science.
Chromatographic method development for pharmaceutical analysis can benefit from in silico steered serial coupling of column segments containing different stationary phases of varying length. Contrary to column coupling through trial and error, in stationary-phase optimized selectivity (SOS)-based chromatography the retention of all solutes is predicted for all possible column combinations allowing a rational selection of the optimal column combination. The possibilities of the strategy now surpass the initial usage in isocratic high performance liquid chromatography (HPLC) on dedicated commercial column segments, and allow applications in gradient-, green-, preparative-, and in supercritical fluid chromatography (SFC) on conventional column hardware. Current possibilities, pharmaceutical applications, a downloadable algorithm, and weaknesses of the approach are discussed to allow broader implementation of this methodology in separation science.