The Application Notebook
The chiral analysis and purification of proton pump inhibitors (PPIs) has become a popular topic as more of these drugs fall out of patent protection each year. Due to their wide range of enantiomeric selectivity, a set of polysaccharide-based chiral stationary phases (CSPs) was screened to identify methods for the successful enantioseparation of four benzimidazoles; rabeprazole, lansoprazole, omeprazole, and pantoprazole.
The chiral analysis and purification of proton pump inhibitors (PPIs) has become a popular topic as more of these drugs fall out of patent protection each year. Due to their wide range of enantiomeric selectivity, a set of polysaccharide-based chiral stationary phases (CSPs) was screened to identify methods for the successful enantioseparation of four benzimidazoles; rabeprazole, lansoprazole, omeprazole, and pantoprazole.
A screening protocol was performed on five different polysaccharide-based chiral stationary phases under reversed phase conditions using Lux® 5 μm columns (Table I). To reduce solvent usage, 150 × 4.6 mm columns were used for the initial screen. Once the best chiral stationary phase was identified for each sample, the mobile phase conditions were further optimized on 250 mm length columns of the same particle size and diameter to get increased resolution. Additional optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents at room temperature.
Table I: Lux® chiral stationary phases
The HPLC analysis of the four benzimidazoles allows for fast and accurate identification of their enantiomers. We have shown analytical techniques in reversed phase conditions conducive to MS detection for each. Preparative techniques can be explored using these analytical techniques by first optimizing mobile phase conditions for best resolution and selectivity followed by loading tests.
Figure 1: Figures 1a through 1d show the racemic mixtures of lansoprazole, omeprazole, rabeprazole, and pantoprazole. In Figure 1a, the single enantiomer, dexlansoprazole, is labeled as peak 2. In Figure 1b, the single enantiomer, esomeprazole, is labeled as peak 1.
Phenomenex, Inc.
411 Madrid Avenue, Torrance, CA 90501
tel. (310) 212-0555, fax (310)328-7768
Website: www.phenomenex.com
Simultaneous Screening of Pesticide Residues in Date Fruits with UHPLC–MS/MS and GC–MS/MS
March 7th 2025Comprehensive information was derived through the utilization of a QuEChERS-UHPLC–MS/MS and GC–MS/MS method for the detection of 211 volatile and stable pesticide residues in 90 date fruit samples.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Pick Your Poison. Isolation of Paclitaxel (Mar 2025)
March 7th 2025The diterpenoid, paclitaxel, which was identified as a potent chemotherapy agent for breast and ovarian cancer originates from the Pacific Yew tree. The isolation of paclitaxel from its major impurities is shown with the use of Hamilton’s PRP-1 (5 µm) HPLC column.