In metabolomics, LC–MS is a popular technique because of its ability to separate a wide range of metabolites, but the presence of many highly polar analytes in these samples poses a challenge. Benzoyl chloride derivatization can be a practical solution, improving both sensitivity and selectivity.
Untargeted GC–MS metabolomics with sample derivatization is shown here to be effective for measuring the chemical profiles of traditional and plant-based meat products.
Under a suitable thermal oxidation regime, vegetable oils yield a mixture of volatile and semivolatile organics that exhibit very high antimicrobial activities against a variety of microbial species. Volatile and semivolatile products were characterized with GC–MS using electron ionization and chemical ionization. The thermal oxidation of vegetable oils resulted in the formation of an array of short and medium-chain acids, aldehydes, and ketones that act synergistically to yield a potent antimicrobial disinfectant.
Under a suitable thermal oxidation regime, vegetable oils yield a mixture of volatile and semivolatile organics that exhibit very high antimicrobial activities against a variety of microbial species. Volatile and semivolatile products were characterized with GC–MS using electron ionization and chemical ionization. The thermal oxidation of vegetable oils resulted in the formation of an array of short and medium-chain acids, aldehydes, and ketones that act synergistically to yield a potent antimicrobial disinfectant.
Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collision-induced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.
Wastewater analysis has become an established approach for retrieving additional epidemiological information about the use of illicit drugs, alcohol, and tobacco at the population level. Here, we present an overview of the recent analytical frameworks and workflows for target and suspect analyses using low- and high-resolution mass spectrometry and discuss the latest advances in wastewater-based epidemiology (WBE).
Wastewater analysis has become an established approach for retrieving additional epidemiological information about the use of illicit drugs, alcohol, and tobacco at the population level. Here, we present an overview of the recent analytical frameworks and workflows for target and suspect analyses using low- and high-resolution mass spectrometry and discuss the latest advances in wastewater-based epidemiology (WBE).
Wastewater analysis has become an established approach for retrieving additional epidemiological information about the use of illicit drugs, alcohol, and tobacco at the population level. Here, we present an overview of the recent analytical frameworks and workflows for target and suspect analyses using low- and high-resolution mass spectrometry and discuss the latest advances in wastewater-based epidemiology (WBE).
The disinfectants commonly used to treat public drinking water can react with naturally occurring organic and inorganic matter in the source water to form disinfection byproducts such as haloacetic acids. Here, we describe the use of two-dimensional matrix-elimination ion chromatography (MEIC) for haloacetic acid analysis. This method minimizes the impact of matrix ions.
In advance of Pittcon 2018, leading scientists-Ronald Majors, Richard Henry, John W. Dolan, Zachary S. Breitbach, and Daniel W. Armstrong-who will be speaking at the LCGC awards symposium give us a preview of their talks.
There is a need for fast and reliable PFAS analyses to monitor drinking water quality. We report on the use of semi-automated sample preparation with EPA methods 533 and 537.1, assessing performance and processing time.
An HPLC method for the testing of CBD oils. The DLC-10 is a small footprint, easy-to-use and low-cost HPLC system. An isocratic assay offers reliability and ease of use.
The presence of capable students and researchers, each with a technical niche to offer, prepares us for future opportunities. On top of that structure, we also aim to maintain this mindset for our instrument selection before beginning projects. The installment of core labs at UT Arlington (www.uta.edu/sirt), making a wide range of instruments available to all research groups, has allowed our students to brainstorm about which instrument is the most appropriate for a specific analysis rather than how to make a measurement work with a given instrument.
Why should you be concerned about mobile-phase degassing - it's all done automatically, isn't it?
A new type of method development that uses modeling to find the "best" separation for high performance liquid chromatography (HPLC) was investigated and principles of Quality by Design (QbD) were followed when planning the investigation. The process delivered precise results and the method was able be transferred to a routine quality control (QC) laboratory.
The application of a novel approach that enables a selective proteolysis of the Fab region of monoclonal antibodies (mAbs) is described. The technique is called nano-surface and molecular-orientation limited (nSMOL) proteolysis. By restricting the proteolysis to the complementarity-determining region (CDR) of the mAb, there is considerable reduction in sample complexity and the time required for method set-up and optimization.
In this poster, we explore parameters that could impact data integrity with the analytes in EPA Method 1633, UCMR 5 and the EU Drinking Water Directive regulations.
Incremental sampling methodology laboratory processing is used to produce an appropriately sized subsample that has the analytes of interest at the same concentration as the large incremental sample collected in the field. The end goal is to produce results that represent the conditions at the site and facilitate good decisions.
We discuss the theory, principles, and key equations required for method translation for both isocratic and gradient LC methods using the Avantor® ACE® Method Translator tool.
In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in liquid chromatography column technology, gas chromatography, sample preparation, and liquid chromatography instruments. They also describe the latest practical developments in supercritical fluid chromatography, 3D printing, capillary electrophoresis, data handling, comprehensive two‑dimensional liquid chromatography, and multidimensional gas chromatography.
The 54th International Symposium on High Performance Liquid Phase Separations and Related Techniques (HPLC 2025) will be held from Sunday through Thursday, June 15-19, 2025, in Bruges, Belgium.
In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in liquid chromatography instruments.
EuSP2024 | GSAC2024 — The 3rd European Sample Preparation Conference and 2nd Green and Sustainable Analytical Chemistry Conference will both take place from 15–18 September 2024 in Chania, Crete, Greece.
In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in sample preparation.
We have entered a new stage in the era of accelerations. Moore’s law continues its expansion, increasing exponentially the computer power available. Other accelerations are remarkable, particularly easy access to cloud computing and the expansion and influence of artificial intelligence to practically all sectors of our society.