The Application Notebook
“Click” chemistry is a class of efficient and selective reactions that is characterized by quantitative yields, tolerance to a broad range of functional groups, facile experimental setup, and minimal synthetic workup. This class of reactions combines particularly well with controlled radical polymerization methods, such as atom transfer radical polymerization (ATRP), and the two techniques have been prolifically employed for the synthesis of a wide variety of novel polymeric materials, including (multi) block copolymers, stars, brushes, and gels. This note describes the analysis of multisegmented block copolymers prepared by click-coupling of block copolymers synthesized by ATRP.
Patricia L. Golas, Nicolay V. Tsarevsky, and Krzysztof Matyjaszewski, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
“Click” chemistry is a class of efficient and selective reactions that is characterized by quantitative yields, tolerance to a broad range of functional groups, facile experimental setup, and minimal synthetic workup. This class of reactions combines particularly well with controlled radical polymerization methods, such as atom transfer radical polymerization (ATRP), and the two techniques have been prolifically employed for the synthesis of a wide variety of novel polymeric materials, including (multi) block copolymers, stars, brushes, and gels. This note describes the analysis of multisegmented block copolymers prepared by click-coupling of block copolymers synthesized by ATRP.
Synthesis
A triblock copolymer consisting of polystyrene (PS) and poly(ethylene oxide) (PEO) was synthesized via ATRP of styrene from a difunctional PEO macroinitiator. The bromine end groups were substituted with azide by reaction with NaN3 in DMF, and the material (N3-PS-PEO-PS-N3) was coupled with propargyl ether to form a multisegmented block copolymer ([PS-PEO- PS]x).
Analysis
The presence of multiple blocks within a single polymer chain meant that conventional size-exclusion chromatography (SEC) could not be used to accurately analyze the molecular weight of the starting materials or products. A triple detector system was employed in conjunction with SEC (TD-SEC), utilizing the following detectors: multi-angle laser light scattering (DAWN), differential viscometer (ViscoStar), and differential refractometer (Optilab). Analysis was performed by ASTRA software to determine molar mass distributions.
The average molecular weight (Mn) of the starting material was determined by TD-SEC to be 6680 g/mol (Figure 1). Accurate molecular weight analysis is imperative to achieving a significant degree of click coupling, since successful step growth-type reactions require stoichiometric balance among end groups.
TD-SEC demonstrated that the click coupling was successful (Figure 2), and a product of higher molecular weight (Mn = 33,100 g/mol) was obtained with a broader molecular weight distribution.
Conclusion
A combination of click chemistry with ATRP was utilized to synthesize multisegmented block copolymers. Absolute molecular weight characterization via TD-SEC demonstrated a degree of polymerization of 5–7, which includes up to 21 separate blocks in a single polymer chain.
TD-SEC analysis combining multi-angle light scattering, differential viscometry, and differential refractometry provides additional characterization capabilities not mentioned here, including the determination of Mark-Houwink-Sakurada coefficients as well as conformation and branching ratio.
Wyatt Technology
6330 Hollister Avenue, Santa Barbara, California 93117, USA
Tel.: +1 (805) 681 9009
Website: www.wyatt.com • E-mail: info@wyatt.com
GC–TOF-MS Finds 250 Volatile Compounds in E-Cigarette Liquids
November 1st 2024A study has used gas chromatography coupled to a time-of-flight mass spectrometer to build an electron ionization mass spectra database of more than 250 chemicals classified as either volatile or semi-volatile compounds. An additional, confirmatory layer of liquid chromatography–mass spectrometry analysis was subsequently performed.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Multivariate Design of Experiments for Gas Chromatographic Analysis
November 1st 2024Recent advances in green chemistry have made multivariate experimental design popular in sample preparation development. This approach helps reduce the number of measurements and data for evaluation and can be useful for method development in gas chromatography.