High-Throughput Analysis of Volatile Compounds in Air, Water, and Soil Using SIFT-MS (Dec 2024)
December 11th 2024This study demonstrates high-throughput analysis of BTEX compounds from several matrices (air, water and soil). Detection limits in the single-digit part-per-billion concentration range (by volume) are readily achievable within seconds using SIFT-MS because sample analysis is achieved without chromatography, pre-concentration, or drying. We also present a calibration approach that enables speciation of ethylbenzene from the xylenes in real-time.
Real-Time Roadside Monitoring of Unreported VOC Emissions from Road Transport by SIFT-MS (Dec 2024)
December 11th 2024This application note summarizes key SIFT-MS results presented in a peer reviewed article entitled “Unreported VOC Emissions from Road Transport Including from Electric Vehicles.” Learn how the Wolfson Atmospheric Chemistry Laboratory at the University of York used SIFT-MS for VOC analysis in its platform to experimentally verify that motor vehicle screen wash is a significant unreported source of VOC emissions (especially for ethanol and methanol).
Real-Time Measurement of EPA Regulated HON Compounds and Environmental Pollutants Using SIFT-MS
September 6th 2024This application note describes the determination of method detection limits (MDLs) for the newly regulated HON (Hazardous Organic NESHAP) compounds, which validate SIFT-MS as an effective solution for measuring these toxic VOCs and other environmental pollutants in ambient air, whether at the fence line or in a mobile setting.
High-Throughput Analysis of Volatile Compounds in Air, Water, and Soil Using SIFT-MS (Sept 2024)
September 6th 2024This study demonstrates high-throughput analysis of BTEX compounds from several matrices (air, water and soil). Detection limits in the single-digit part-per-billion concentration range (by volume) are readily achievable within seconds using SIFT-MS, because sample analysis is achieved without chromatography, pre-concentration, or drying. We also present a calibration approach that enables speciation of ethylbenzene from the xylenes in real-time.
Real-Time Roadside Monitoring of Unreported VOC Emissions from Road Transport by SIFT-MS (Sept 2024)
September 6th 2024This application note summarizes key SIFT-MS results presented in a peer reviewed article entitled “Unreported VOC Emissions from Road Transport Including from Electric Vehicles.” Learn how the Wolfson Atmospheric Chemistry Laboratory at the University of York used SIFT-MS for VOC analysis in its platform to experimentally verify that motor vehicle screen wash is a significant unreported source of VOC emissions (especially for ethanol and methanol).
SyftEnviro Environmental Monitoring Software
September 6th 2024This brochure SyftEnviro environmental monitoring software which is a comprehensive solution for visualizing data from mobile monitoring campaigns. It provides a user-friendly interface for collecting, mapping, and analyzing data taken by environmental monitoring technicians while investigating environmental emissions. SyftEnviro provides the tools to identify pollution sources and take immediate action.
Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea (Sept 2024)
September 6th 2024This publication reviews VOC pollutant monitoring applications of SIFT-MS in South Korea. SIFT-MS has been applied to emission source characterization, fenceline monitoring, ambient monitoring, pollution mapping, and incident response (including the use of drone-based sampling) for hazardous air pollutants (HAPs), odor nuisance species, and compounds that have high ozone formation potential (OFP) and/or contribute to secondary aerosol (SOA) formation.
High-Throughput Analysis of Volatile Compounds in Air, Water, and Soil Using SIFT-MS (Apr 2024)
March 27th 2024This study demonstrates high-throughput analysis of BTEX compounds from several matrices (air, water and soil). Detection limits in the single-digit part-per-billion concentration range (by volume) are readily achievable within seconds using SIFT-MS, because sample analysis is achieved without chromatography, pre-concentration, or drying. We also present a calibration approach that enables speciation of ethylbenzene from the xylenes in real time.
Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea
March 27th 2024This publication reviews VOC pollutant monitoring applications of SIFT-MS in South Korea. SIFT-MS has been applied to emission source characterization, fenceline monitoring, ambient monitoring, pollution mapping, and incident response (including the use of drone-based sampling) for hazardous air pollutants (HAPs), odor nuisance species, and compounds that have high ozone formation potential (OFP) and/or contribute to secondary aerosol (SOA) formation.
Simple Rapid Analysis of Packaging for Volatile MOSH and MOAH Contaminants
March 20th 2024This application note demonstrates that automated headspace-SIFT-MS analysis has the potential to screen larger sample numbers for the volatile MOH fraction, providing a rapid indication of packaging material contamination. As benzene has also recently been found to be problematic in commercial products, Headspace-SIFT-MS can screen over 220 samples per day for volatile MOSH and MOAH compounds – nearly seven-fold more samples than the routine liquid and gas chromatography method.
Simple Rapid Analysis of Ethylene Oxide in a Polysorbate 80 Excipient Using SIFT-MS
March 5th 2024Quantitative ethylene oxide analysis in Polysorbate 80 excipient is greatly simplified using SIFT-MS, with a time to first test result that is eight-fold faster than the current compendial method and a daily sample throughput that is 9- to 14-fold higher. In this application note, a simplified EtO method is presented that uses a much smaller quantity of PS80 for analysis than headspace GC-FID.
Simple Rapid Analysis of Formaldehyde Impurities in Gelucire
March 5th 2024This application note describes how SIFT-MS greatly simplifies formaldehyde detection and quantitation through direct, instantaneous, and sensitive (sub-ppbV) sample ionization. Sample throughputs of up to 250+ samples/day are possible using the method detailed in this study.
Analysis of N-Nitrosodimethylamine (NDMA) Impurity in Rantidine Products Using SIFT-MS
February 21st 2024Quantitative analysis of volatile nitrosamine impurities in drug products is greatly simplified using SIFT-MS and has a three-fold throughput advantage (excluding sample prep benefits) over chromatographic methods. This application note describes the headspace-SIFT-MS analysis of ranitidine products which achieves a limit of quantitation of 2 ng g-1 for NDMA in 500 mg of drug product.
Real-Time Monitoring of Bioreactor Production Processes Using SIFT-MS
February 21st 2024The ability of SIFT-MS to monitor critical volatile organic compounds (VOCs) produced by a bioreactor in real-time at low parts-per-billion by volume (ppbV) concentrations is demonstrated. This application note presents the results of a pilot-scale feasibility study conducted over several weeks, demonstrating the utility of SIFT-MS for maximizing production outcomes.
Revolutionary Productivity For Volatile Residue and Impurity Analysis (Feb 2024)
February 21st 2024This application note describes a scenario in which Syft Tracer replaces five chromatography systems and still has significant available sample capacity. Next gen SIFT-MS provides rapid, chromatography-free workflows which revolutionize volatile compound analysis.
High-Throughput Quantitative Analysis of Benzene in Personal Care Products Using Headspace-SIFT-MS
February 21st 2024This application note demonstrates the speed of headspace-SIFT-MS methods for the analysis of benzene in personal care products (PCPs). In less than three hours, seven-point calibration curves can be generated and accurate quantification of benzene in PCPs achieved. SIFT-MS provides rapid, sensitive, and robust analysis of benzene and other contaminants in a variety of commercial products. Integration with a headspace autosampler enables rapid screening of hundreds of samples per day.