Nicholas H. Snow is the Founding Endowed Professor in the Department of Chemistry and Biochemistry at Seton Hall University, and an Adjuncy Professor of Medical Science. During his 30 years as a chromatographer, he has published more than 70 refereed articles and book chapters and has given more than 200 presentations and short courses. He is interested in the fundamentals and applications of separation science, especially gas chromatography, sampling, and sample preparation for chemical analysis. His research group is very active, with ongoing projects using GC, GC-MS, two-dimensional GC, and extraction methods including headspace, liquid-liquid extraction, and solid-phase microextraction. Direct correspondence to: LCGCedit@mmhgroup.com
From Detector to Decision: How Does the GC Instrument Generate Your Data?
September 1st 2020Using the flame ionization detector (FID) as an example, we explain how the detector in a GC system generates a signal and how it is processed into chromatograms, and explore modern aspects of storing and processing digital data.
From Detector to Decision: How Does GC Generate Your Data?
August 31st 2020Gas chromatographs today are easy to use. With modern web-based controls and data analysis, you don’t even have to be in the laboratory to run the instrument and collect the data. In this first instalment on how this magic happens, we discuss signal generation and processing from a classical flame ionization detector (FID), so that you can use the data to make decisions.
Beat the Heat: Cold Injections in Gas Chromatography
July 1st 2020In gas chromatography, heating the sample in the inlet can lead to sample losses and loss of quantitative reproducibility, but these problems can be avoided using cold sample introduction. Here, we explain the various types of cold injection and why you should consider it in your next instrument purchase or upgrade.
Beat the Heat: Cold Injections in Gas Chromatography
July 1st 2020In gas chromatography, heating the sample in the inlet can lead to sample losses and loss of quantitative reproducibility, but these problems can be avoided using cold sample introduction. This article describes various types of cold injection and how they can benefit the analyst.
Temperature Programmed GC: Why Are All Those Peaks So Sharp?
July 1st 2019This instalment of “GC Connections” dives into temperature programming. First, the differences in peak widths and retention times between temperature programmed and isothermal chromatograms are examined. Why are all the peaks so sharp in temperature programmed GC, yet they get broader (and shorter) in isothermal GC? Next, we explore some early ideas about temperature programming and peak broadening that explain why the peaks are so sharp in temperature-programmed GC, and why the peak spacing is different from isothermal GC. Finally, we examine an important consequence of our ability to program temperature: the need for temperature programming in splitless and other injections that use “solvent effects” and other peak focusing mechanisms. These points are illustrated using several historical figures and chromatograms from the early days of GC.
GCxGC: From Research to Routine
February 1st 2019Two-dimensional gas chromatography (GCxGC) is becoming the technique of choice for analysis of highly complex samples such as petroleum, pharmaceuticals, biological materials, food, flavors, and fragrances. Here, we explain how GCxGC works and provide examples that illustrate its advantages.
Stopping GC and GC–MS Problems Before They Start
January 1st 2019The best troubleshooting is proactive; problems are much more easily prevented then solved. Proactive troubleshooting involves anticipating problems before they start, and stopping them before they disrupt your workflow. It also ensures a long operational lifetime for instruments. Unlike many other instruments, a gas chromatograph (GC) has several components, each of which must be properly maintained and optimized for the full instrument to operate properly. This instalment of “GC Connections” focuses on simple proactive steps that users of a gas chromatograph can take to ensure that instruments will operate correctly over time.
Stationary Phase Selectivity: The Chemistry Behind the Separation
November 1st 2018“The column is the heart of the separation.” Perhaps more accurately, the column is where the chemistry that generates a separation happens. For chemists and non-chemists alike, the chemistry that drives the utility of a column to solve a separation problem can be complex and confusing. Selectivity describes the ability of a column to effect a separation. This instalment of “GC Connections” focuses on selectivity, its definition, and its importance for generating separations and resolution. We will also see how selectivity is the concept that underlies the idea of column polarity. We begin by asking two simple questions about common observations, then extend these observations into a capillary gas chromatography (GC) column, and conclude with an introduction to methods for evaluating the quality, selectivity, and polarity of a stationary phase or column.
Split, Splitless, and Beyond—Getting the Most From Your Inlet
September 1st 2018While capillary gas chromatography has been undergoing a renaissance, with new columns, detectors, data systems, and multidimensional separations, the classical inlets have remained the same: We are still injecting liquid samples with syringes into split and splitless inlets, as we have for nearly 50 years. Split and splitless injections present several well-known and some not-so-well known challenges, mostly arising from heating of the inlet, that make sample injection and inlets a major hurdle for gas chromatographers. These challenges and some ideas for mitigating them are discussed and a case is made for renewed exploration of the cool inlets and injection techniques: cool on-column and programmed temperature vaporization.
Split, Splitless, and Beyond—Getting the Most From Your Inlet
July 1st 2018While capillary gas chromatography has been undergoing a renaissance, with new columns, detectors, data systems, and multidimensional separations, the classical inlets have remained the same: We are still injecting liquid samples with syringes into split and splitless inlets, as we have for nearly 50 years. Split and splitless injections present several well-known and some not-so-well known challenges, mostly arising from heating of the inlet, that make sample injection and inlets a major hurdle for gas chromatographers. These challenges and some ideas for mitigating them are discussed and a case is made for renewed exploration of the cool inlets and injection techniques: cool on-column and programmed temperature vaporization.
Analysis of Pharmaceutical Residual Solvents Using Comprehensive Two-Dimensional Gas Chromatograhy
January 1st 2008Comprehensive GCxGC was employed for the separation of ICH and USP 1, 2, and 3 pharmaceutical solvents. The significantly improved peak capacity in GCxGC allows a single method for any combination of solvents and mitigates interference due to impurities in the solvents, diluents, analyte matrices, and from column or septum bleed, through the increased separation space.
HPLC with Charged Aerosol Detection for Pharmaceutical Cleaning Validation
September 1st 2007Cleaning validation is a major analytical application in the pharmaceutical industry. Here, high performance liquid chromatography (HPLC) with charged aerosol detection is compared and contrasted to HPLC with UV detection showing comparable performance and several advantages for charged aerosol detection, especially for analytes that do not contain a chromophore.