Recent advances in ultrafast liquid chromatography
Recent advances in ultrafast liquid chromatography
Modern ultrafast liquid chromatography systems dramatically increase the chromatographic resolution and often yield peak widths in the range of ≤ 1 second (FWHM). Mass spectrometers coupled to such a UHPLC system have to be able to cope with this separation speed. On top of this, in particular, any kind of screening experiments increase the need for MS instruments that are able to rapidly acquire MS and MS–MS both in positive and negative mode. The Bruker amaZon ion trap series instruments generate a high level of information for MSn screening. Novel electronics and a modified ion transfer capillary enable extremely fast polarity switching in the Zero Delay Alternating mode. In combination with the unrivalled scan speed of 52000 u/sec., truly high speed data acquisition for screening is possible. This can be applied in both target screening as well as data-dependent auto-MSn of unknowns without significant loss in speed or sensitivity. Supported by spectral libraries, compounds are confidentially identified in both scenarios. An application example shown here is the target screening for toxins in serum or urine as done in a clinical laboratory. Furthermore, an example for compound identification in a completely automated push-button approach is presented.
A drug mixture was spiked into urine at a concentration of 50 ng/mL each. 2 μL urine were injected and separated on a Waters Acquity UPLC system with a 2.1 × 50 mm Acquity BEH C18 1.7 μm column at a flow-rate of 0.5 mL/min. The used gradient was 10–98% acetonitrile in 3 min. The amaZon was set to alternating polarities in auto-MSn mode. The "compounds — AutoMSn" algorithm in the Bruker DataAnalysis post-processing software picked the detected compounds, and their MSn spectra were searched against a spectral library with more than 1300 spectral entries (383 compounds).
The Zero Delay Alternating mode of the amaZon enables the acquisition of spectra of both polarities with the same data speed as in single polarity only. As can be seen in Figure 1, a 20 Hz MS spectral repetition rate is achieved even under polarity switching conditions (blue and red dots acquired in a single run). No compromise with regard to speed or sensitivity has to be made. Figure 2 demonstrates the data acquisition speed of the amaZon, here as the achievable number of MS and MS–MS spectra under polarity switching condition. At least three cycles of full ±MS and MS–MS can be performed on typical UHPLC peaks of ~1 sec FWHM, resulting in a total number of 12 MS and MS–MS spectra.
Figure 1
This high information content can be used to search against a spectral library. All 10 components were successfully identified. Table 1 shows the match between the experimental data and the library MS–MS spectra. Peak no. 2 was identified as either tramadol or O-demethylated venlafaxine (correctly identified) because both are structurally related (same elemental composition) and produce the same MS–MS signals. To further distinguish the two compounds, automated data dependent MS3 spectra can be acquired and compared to the library as well. If available, reference retention times of the compounds can be used as a further dimension of information.
Figure 2
Even the co-eluting compounds no. 5 (clozapine) and 6 (venlafaxine) can be identified, because the amaZon enables fast MS–MS of several components even within the extremely narrow UHPLC peak. This leads to a high score (purity factor) for the library search result (i.e., to an extremely high confidence in the identification).
Table 1: Identification of spiked compounds by library search of MSâMS spectra.
The identification of drugs and toxins can be automated using the Bruker Compass OpenAccess software module as it supports push-button experiments for routine screening applications. A very simple user interface on the acquisition PC allows the user to queue the submitted samples for automated data acquisition and processing (Figure 3). Samples can be submitted from any PC in the intranet via a web interface. All information regarding samples, status of the jobs, data, reports and processing results are stored in a database. When the sample has been processed, the spectra, chromatograms and identification results are sent to the user as a PDF report via e-mail or can be accessed via the web interface. Figure 3 shows part of the workflow and the results on eight antidepressants spiked into plasma.
Figure 3
The amaZon was demonstrated as a fast and reliable screening instrument. Library-based identification of compounds was achieved by ultrafast MS and MS–MS under polarity switching within extremely short UPLC gradients. With unsurpassed speed and sensitivity, the amaZon is the instrument of choice for compound screening with spectral libraries.
Bruker Daltonik GmbH
Fahrenheitstr. 4, 28359 Bremen, Germany
tel. +49 421 2205 0 fax +49 421 2205 104
E-mail: sales@bdal.de
Website: www.bdal.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.