To guide the development of aggregate free protein formulations, there is an urgent need for complementary methods that allow a sensitive detection, characterization and quantification of different types of protein aggregates.
To guide the development of aggregate free protein formulations, there is an urgent need for complementary methods that allow a sensitive detection, characterization and quantification of different types of protein aggregates. Our aim was to use size exclusion chromatography (HP-SEC) and asymmetrical flow field-flow fractionation (AF4) in combination with UV, fluorescence and multiangle laser light scattering (MALS) detection to quantify and characterize monoclonal antibody (IgG) aggregates in heat stressed formulations. For fluorescence detection the extrinsic fluorescent dye Bis-ANS (600 nM) was added to the mobile phase and detected using an excitation of 385 nm and an emission of 488 nm.
Figure 1: UV detection (280 nm) and molar mass calculated from the MALS signal of AF4 separation of non-stressed IgG, 10 min 75°C stressed and 10?min 80 °C stressed IgG.
The UV signal at 280 nm was used to calculate the relative amount of monomer and aggregates and the total recovery of the method using an extinction coefficient of 1.5 mLmg–1 cm–1. HP-SEC resulted in a better separation of monomer and dimers. However, the recovery was below 50% for the 80 °C stressed samples, because of aggregates larger than the exclusion volume of the column. With AF4 these larger aggregates could be analysed and a higher recovery of > 90% was achieved. From the MALS and UV signal the molar mass of the monomer was calculated to be 150 kDa, the dimer 300 kDa and the larger aggregates higher than 400 kDa (Figure 1). Bis-ANS fluorescence detection represents a highly sensitive method to identify aggregated IgG (Figure 2). Bis-ANS exhibits an increase in fluorescence in a hydrophobic environment, which is frequently found wherever proteins aggregate or change conformation. In conclusion, the combination of different detectors for HP-SEC and AF4 analysis adds significant methodological comprehensiveness, thus achieving a reliable characterization of IgG samples.
Figure 2: Fluorescence detection (excitation 385 nm, emission 488 nm) of AF4 separation of non-stressed IgG, 10 min 75 °C stressed and 10 min 80 °C stressed IgG.
Wyatt Technology
6300 Hollister Ave., Santa Barbara, California 93117, USA
tel. +1 805 681 9009 fax +1 805 681 0123
E-mail: info@wyatt.com
Website: www.wyatt.com
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.