Over-expression of recombinant proteins is commonly used for the production of protein reagents in industry and academia. Problems often occur relating to the stress put on the cells to deal with this huge increase in synthesis. Cellular proteins that are part of the protein synthesis machinery are often up-regulated under such conditions. Large quantities of the recombinant protein can be bound to these cellular proteins, making purification difficult.
Over-expression of recombinant proteins is commonly used for the production of protein reagents in industry and academia. Problems often occur relating to the stress put on the cells to deal with this huge increase in synthesis. Cellular proteins that are part of the protein synthesis machinery are often up-regulated under such conditions. Large quantities of the recombinant protein can be bound to these cellular proteins, making purification difficult.
Scale-up purification of a 61 kDa recombinant protein was found to contain a significant contaminant (Figure 1), not found in the smaller scale trials. The 28 kDa protein was identified by Edman degradation as rotamase, an enzyme that assists in protein folding. Co-purification of the rotamase suggests it is bound to the protein of interest, thus preventing further purification with techniques such as size exclusion chromatography (SEC).
Figure 1: SDS-PAGE of a partially purified recombinant protein (Mw = 61 kDa) containing a significant contaminant of the enzyme rotamase (Mw = 28 kDa).
Analytical size exclusion chromatography, followed by on-line direct mass detection by multiangle light scattering (MALS), showed that a significant amount of the recombinant protein was not bound to the rotamase. The sample was separated with a YMC-pack Diol-200 column and detected by Wyatt Technology's 18-angle DAWN photometer and the Optilab-DSP Interferometric
Refractometer.
Three peaks were isolated that contained 93 kDa, 68 kDa and 28 kDa species (Figure 2). The DAWN was able to identify the peaks in the following way: a non-covalent complex of one rotamase molecule and one recombinant protein molecule (peak 1), the free recombinant protein (peak 2) and the free rotamase (peak 3).
Figure 2: Peak 1, with a molar mass of 93 kDa is one recombinant protein and one rotamase; Peak 2, with a molar mass of 68 kDa, is a free recombinant protein; Peak 3 is a 27 kDa free rotamase.
Estimating the molar masses of the proteins using columns calibrated to a set of protein standards (BioRad) resulted in significantly different values for the three peaks: 146 kDa, 98 kDa, and 46 kDa, respectively. Thus, the information provided by MALS system — an absolute system because it is not calibrated with standards — contributed to the correct interpretation of the chromatogram, provided invaluable insight for development of the scale-up purification protocol and into the protein–protein interactions.
We are most grateful to Nestor B. Nestor and George A. Karam, Pfizer Central Research, Groton, Connecticut, USA, for their efforts in preparing this application note. Protein–Protein Interactions.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
tel. +1 805 681 9009 fax +1 805 681 0123
E-mail: info@wyatt.com
Website: www.wyatt.com
Determining Neurotransmitters in Spinal Cords with UHPLC
February 18th 2025Researchers at Jilin University (Changchun, China) developed a highly sensitive, rapid, and accurate method for analyzing neurotransmitters (NTs) in rat spinal cord tissue. Ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) in conjunction with ultra-ionic liquid dispersive liquid-liquid microextraction (UA-MIL-DLLME) were used to extract NTs for analysis.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Revolutionizing LC-MS with Next-Gen Separation for Cyclic Peptide Analysis
February 17th 2025Cyclic peptides, known for their stability and high specificity, are promising therapeutic agents in the fight against cancer, infections, and autoimmune diseases. However, developing effective cyclic peptides presents numerous challenges, including poor pharmacokinetics, efficacy, and toxicity. Traditional methods like liquid chromatography tandem-mass spectrometry (LC-MS/MS) often struggle with resolving isomeric linear peptide metabolites, posing significant risks in safety, efficacy, and regulatory approval. In this paper, Komal Kedia, PhD, will share how she leveraged MOBIE’s high-resolution ion mobility-mass spectrometry (IM-MS) system to achieve a 72% reduction in run times, 200% greater resolving power, and enhanced accuracy in identifying “soft spots” prone to enzymatic degradation.