The Application Notebook
Hydroxyethylstarches (HES) are used increasingly as plasma expanders in medical applications. The HES's circulation time in the blood depends strongly on its molar mass distributions.
Hydroxyethylstarches (HES) are used increasingly as plasma expanders in medical applications. The HES's circulation time in the blood depends strongly on its molar mass distributions. Historically, polysaccharide characterization by gel permeation chromatography (GPC) has been problematic, especially if high molar mass components are present. Because of its superior separation capability, especially on molecules exceeding 50 kDa, flow field-flow fractionation (Flow-FFF) is an excellent separation alternative. By coupling this technology to a multi angle light scattering (MALS) detector, such as a DAWN or miniDAWN, absolute values can be determined without making any assumptions.
Figure 1: The fractograms of the three samples with their molar mass values overlaid.
We characterized 0.2% (w/v) HES solutions in doubly-distilled water. The HES types were 200/0.5, 130/0.42, and 70/0.5 from Serumwerk (Bernburg, Germany). The FFF system was an Eclipse connected to a DAWN EOS and an RI detector (Shodex 101). Volumes of 100 µL were injected into the 350-µm spacer channel containing a 10 kDa regenerated cellulose membrane. A channel flow of 1 mL/min was kept constant while the cross flow decreased linearly from 2 mL/min to 0 mL/min within 20 min. Data were evaluated using Wyatt's ASTRA software package.
Figure 2: Three different HES samples shown on the cumulative weight fraction plot of ASTRA, indicating the large differences among them.
The aF-FFF/MALS fractograms of the HES types are compared in Figure 1. Corresponding to normal mode Flow-FFF theory, samples with smaller average molar mass elute faster. In Figure 2, the molar mass distributions are given as cumulative weight fraction plots. As is evident in the plots, monomodal distributions were successfully achieved. The values covered a range from approximately 20 kDa to approximately 600 kDa and up to 2 GDa in size, depending on the characterized HES type. Thus, the average molar mass value was mainly influenced by high molar mass fractions. This was also indicated by higher polydispersity values for HES types with higher molar mass.
Asymmetrical FFF/MALS is, therefore, an excellent method for characterizing medical polysaccharides such as HES. The main advantage of this technique is that molar mass distributions can be determined from absolute values over an extremely wide range of masses.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, CA 93117
tel. (805) 681-9009, fax (805) 681-0123
E-mail: info@wyatt.com, Website: www.wyatt.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.