The Application Notebook
Benzylideneacetophenone forms the central core for a variety of important biological compounds, known collectively as chalcones. Many of these compounds have significant medicinal value as they demonstrate antibacterial, antifungal, antitumor, and anti-inflammatory properties.
Benzylideneacetophenone forms the central core for a variety of important biological compounds, known collectively as chalcones. Many of these compounds have significant medicinal value as they demonstrate antibacterial, antifungal, antitumor, and anti-inflammatory properties. They are synthesized by an aldol condensation between a benzaldehyde and an acetophenone in the presence of NaOH as catalyst. In this application note, benzylideneacetophenone is isolated from a crude reaction mixture using flash chromatographic technique, including consideration for scale-up.
Figure 1: TLC of crude mixture.
TLC on silica gel Si60F254, developed in n-hexane/ethyl acetate 19:1, detection UV 254nm.
Cartridge 12 × 150 mm, prepacked with silica gel 60, 40–63 µm
2 Pump modules C-605
Fraction collector C-660
Control-Unit C-620 with SepacoreControl software
UV Photometer C-635
Figure 2: Separation 1.
Separation Conditions
Eluent: see below
Flow rate: 10 mL/min
100 mg crude mixture, dissolved in n-hexane and some drops of toluene (solubility of the sample in pure n-hexane too low)
Loading: approx. 0.4 mL
Separation 1
Eluent: n-hexane with 2% ethyl acetate, isocratic
Figure 3: Separation 2.
Separation 2
Eluent: n-hexane with 1%, 2% and 3% ethyl acetate, step gradient. Each step was initiated after a component was completely eluted (at the end of a peak).
TLC Check
TLC on silica gel Si60F254, developed in n-hexane/ethyl acetate 19:1, detection: UV 254 nm
1 = Benzaldehyde
2 = Benzylideneacetophenone
3= Benzophenone
Figure 4: TLC check of Separation 2.
Recovery
Fraction 7: 65 mg
Calculation of the scale-up factor
Cartridge 12 × 150 mm: cross sectional area = 1.13 cm2
Cartridge 40 × 150 mm: cross sectional area = 12.56 cm2
Scale-up-factor = 12.56 cm2 / 1.13 cm2 = 11.1 ≈ 10
Figure 5: Scale-up separation.
Separation conditions
Eluent: n-hexane with 1%, 2% and 3% ethyl acetate, step gradient
Sample: 1 g crude mixture, dissolved in n-hexane/toluene 7:3 (solubility of the sample in n-hexane too low, toluene is eluted as front peak)
Injection volume: 2 mL
Figure 6: TLC check of scale-up.
TLC-Check
TLC on silica gel Si60F254, developed in n-hexane/ethyl acetate 19:1, detection: UV 254 nm
Recovery
Fraction 13–16: 512 mg crystalline product, mp 57 °C
BUCHI Corporation
19 Lukens Drive, Suite 400, New Castle, DE 19720
tel. (302) 652-3000, fax (302) 652-8777
Website: www.mybuchi.com
Determining Enhanced Sensitivity to Odors due to Anxiety-Associated Chemosignals with GC
May 8th 2025Based on their hypothesis that smelling anxiety chemosignals can, like visual anxiety induction, lead to an increase in odor sensitivity, a joint study between the University of Erlangen-Nuremberg (Erlangen, Germany) and the Fraunhofer Institute for Process Engineering and Packaging (Freising, Germany) combined behavioral experiments, odor profile analysis by a trained panel, and instrumental analysis of odorants (gas chromatography-olfactometry) and volatiles (gas chromatography-mass spectrometry).
Investigating 3D-Printable Stationary Phases in Liquid Chromatography
May 7th 20253D printing technology has potential in chromatography, but a major challenge is developing materials with both high porosity and robust mechanical properties. Recently, scientists compared the separation performances of eight different 3D printable stationary phases.
Detecting Hyper-Fast Chromatographic Peaks Using Ion Mobility Spectrometry
May 6th 2025Ion mobility spectrometers can detect trace compounds quickly, though they can face various issues with detecting certain peaks. University of Hannover scientists created a new system for resolving hyper-fast gas chromatography (GC) peaks.