The Application Notebook
Shimadzu
Aflatoxins are toxins produced by several aspergillus fungus species. As well as being highly toxic, they are also known to be carcinogenic, so the inspection of foods for their presence is necessary (1). In Europe the maximum allowed concentrations in food and food compositions are regulated; limits have been described for the totals and for the species aflatoxin B1, B2, G1 and G2. This application describes two cases of analysis of these 4 aflatoxins (B1, B2, G1 and G2), using the prominence RF-20AXS high-sensitivity fluorescence detector while applying trifluoroacetic acid derivatization and direct detection.
Typically, aflatoxins B1 and G1 are converted to the hydroxylderivative aflatoxins B2a and G2a using trifluoroacetic acid (TFA) to increase their fluorescence intensity in HPLC analysis. Figure 1 shows the structures of the 4 aflatoxins and the B2a and G2a TFA derivatives. When analysing aflatoxins in food, TFA derivatization is done for both the standard solution and the sample solution.
Figure 1: Structures of aflatoxins B1, B2, G1, G2 and trifluoroacetic acid-derivatized forms (B2a, G2a).
Figure 2 shows chromatograms of standard solutions of the 4 aflatoxins (B1, B2, G1 and G2) obtained following TFA derivatization (Figure 5) with 20 µL injections, and Table 1 shows the analytical conditions. A peak area repeatability (n = 6) of 1.2% relative standard deviation (RSD) was obtained for the B2a peak in the chromatogram on the right in Figure 2, and the detection limit (S/N ratio = 3.3, 20 µL injection) was calculated to be 0.4 ng/L (8 fg). Figure 3 shows the calibration curves (B1 and G1: 0.004–20 µg/L, B2 and G2: 0.001–5 µg/L). Excellent linearity was obtained for all 4 components, with an R2 value greater than 0.9999. Ultra-trace levels of aflatoxins can therefore be detected accurately with high sensitivity using the RF-20AXS.
Figure 2: Chromatograms of aflatoxin standard solutions after derivatization with trifluoroacetic acid (20 µL injected); (left) B1 and G1: 2.0 µg/L, B2 and G2: 0.5 µg/L, (right) B1 and G1: 20 ng/L, B2 and G2: 5 ng/L.
Column: Shim-pack FC-ODS (150 mm L. × 4.6 mm i.d., 3 µm)
Mobile phase: Water/Methanol/Acetonitrile = 6/3/1 (v/v/v)
Flow rate: 0.8 mL/min
Column temp.: 40 °C
Detection : RF-20AXS, Ex at 365 nm, Em at 450 nm
RF cell : Conventional cell
Cell temp.: 25 °C
Injection volume: 20 µL
Figure 3: Calibration curves of aflatoxin standard solutions after derivatization with trifluoroacetic acid (B1 and G1: 0.004â2.0 µg/L, B2 and G2: 0.001â5 µg/L, 20 µL injected).
Apart from using derivatization methods, direct detection of aflatoxins is also possible using the highly sensitive RF-20AXS fluorescence detector.
Figure 4: Chromatograms of aflatoxin standard solutions by direct detection (20 µL injected) (left) B1 and G1: 2.0 µg/L, B2 and G2: 0.5 µg/L, (right) B1 and G1: 20 ng/L, B2 and G2: 5 ng/L.
Figure 4 shows the chromatograms of standard solutions of the 4 aflatoxins (B1, B2, G1, G2) obtained with 20 µL injections without TFA derivatization. Analytical conditions were the same as those shown in Table 1. Regarding the B1 peak in the chromatogram on the right in Figure 4, a peak area repeatability (n = 6) of 2.7% RSD was obtained, and the detection limit (S/N ratio = 3.3, 20 µL injection) was calculated to be 3 ng/L(60 fg). This demonstrated that testing for aflatoxin B1 and G1 can be done with sufficient sensitivity using direct detection with the RF-20AXS, without TFA derivatization.
For a food application example, aflatoxin standard solution was added to commercially available cornflour so that the aflatoxin concentrations in the sample became 0.8 µg/kg for B1 and G1, and 0.2 µg/kg for B2 and G2, respectively. The pseudo-contaminated sample was then analysed using both TFA derivatization and direct detection without derivatization. Figure 5 shows the chromatograms obtained from analysis of commercially available cornflour, unspiked (blank) and spiked with the aflatoxin standard solution, in this case using TFA derivatization.
Figure 5: Chromatograms of cornflour using derivatization with TFA (20 µL injected) (upper) spiked with aflatoxin standard, (lower) unspiked.
(1) Shimadzu - LC Application News L 428, Shimadzu Corp. Kyoto, Japan.
Shimadzu Europa GmbH
Albert-Hahn-Strasse 6-10 47269 Duisburg, Germany
tel. +49 203 7687 0 fax +49 203 766625
E-mail: shimadzu@shimadzu.eu
Website: www.shimadzu.eu
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.