The Application Notebook
Thermo Scientific
N-Methylcarbamates are widely used agricultural pesticides. For their determination, reversed-phase high-performance liquid chromatography (RP-HPLC) with fluorescence detection following postcolumn derivatization, per U.S. EPA Methods 531.2 and 8318, is typically used. When using HPLC with UV detection, a sample preparation procedure — either liquid–liquid extraction or off-line solid-phase extraction (SPE)—is required to increase detection sensitivity. However, these procedures are time-consuming, require large volumes of organic solvents, and are deficient in terms of process control. This work describes an automated online SPE HPLC with UV absorbance method that provides a rapid determination of carbofuran and carbaryl, two of the most frequently used carbamate pesticides, without the need for postcolumn derivatization.
The experimental configuration, sample preparation procedures, more experimental results and references are described in Thermo Scientific Application Update 186.
Linearity was tested using standards with concentrations of 0.5–100 µg/L undergoing on-line SPE under the specified chromatographic conditions (r value better 0.9999). The method showed excellent sensitivity, with detection limits better than those defined in the EPA Method 531.2 (carbofuran 0.062 µg/L, carbaryl 0.036 µg/L), in the standard method enacted by the Ministry of Health, People's Republic of China (7 µg/L for carbofuran), as well as other applicable U.S. and European drinking water regulations. Reproducibility for a 5 µg/L spiked standard was very good, with ca. ±1% area RSD.
Trace B in Figure 1 illustrates good separation and response for carbofuran and carabryl using a 2500 µL injection volume. Here, tap water was spiked with 1 µg/L carbofuran and carbaryl. Injection volumes larger 2500 µL were not beneficial, as an overloading of the SPE cartridge was observed (Figure 1 Trace A). Spike experiments using tap, pond, surface, and farmland water from the Pudong District of Shanghai, China showed excellent SPE recoveries between 81–120% for a 2500 µL injection volume. Resolution between carbofuran and carbaryl was 3.5, exceeding the value required by the EPA Methods ≤1.0). A Thermo Scientific Dionex SolEx on-line SPE HRP cartridge, 12–14 µm, 2.1 × 20 mm, was used for the enrichment. A Thermo Scientific Acclaim 120 C18, 3 µm Analytical, 3 × 150 mm column was used for the separation. Under the optimized chromatographic conditions, the complete analysis required only 5 min.
Figure 1: Chromatograms of a tap water sample spiked with 1 µg/L each carbofuran and carbaryl standards: A) 10,000 µL; and B) 2500 µL injection volumes.
Fully automated on-line SPE HPLC as optimized and illustrated here provided good selectivity and suitability for the rapid analysis of carbofuran and carbaryl in tap and environmental water samples. With excellent linearity, sensitivity, and reproducibility, on-line SPE HPLC provides full automation, eliminates operator-related variation and can help enforce strict process control.
Receive the complete application note at: www.thermoscientific/AU186
Thermo Fisher Scientific Inc.
1228 Titan Way, P.O. Box 3603, Sunnyvale, California, USA
tel. (800) 532 4752
Website: www.thermoscientific.com/dionex
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.