The Application Notebook
Thermo Scientific
Residuals of pesticides widely used in agriculture are monitored in foods for human consumption through the use of statutory Maximum Residue Levels (MRLs). Regulation EC 396/2005 adopted in the European Union sets MRLs for over 500 pesticides in over 300 food commodities, many at a default value of 0.01 mg/kg (the typical routine analytical method limit of determination). Thus, food safety laboratories must curb costs and turnaround times (often to <48 hours) while testing a wide array of foods for a large number of pesticide residues at concentrations levels 10 lower than 0.01 mg/kg. This is most often achieved using multiresidue methods with a combination of LC–MS-MS and/or GC–MS techniques to determine pesticide residues in a single generic solvent extract of the sample.
One such example is the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) procedure, which is based on acetonitrile extraction and dispersive solid-phase extraction. After the QuEChERS extraction, a solvent exchange is made to facilitate the GC injection. Although the QuEChERS extraction technique provides a fast turnaround time for a large number of samples with small sample volumes in the range of 10 g, the heavy matrix load of QuEChERS extraction requires increased robustness of the GC inlet system and increased selectivity from the MS-MS analyser. Described here is a high-quality, low-level analysis of pesticides in produce samples using the Thermo Scientific TSQ Quantum XLS Ultra GC–MS-MS system.
Figure 1: Comparison of U-SRM and standard SRM for pentachloroanisole and isodrin in wheat at 10 ppb level. Top: The chromatogram in U-SRM SRM (Q1 FWHM at 0.1 Da). Bottom: The same sample in standard mode (Q1 FWHM at 0.7 Da).
For most of the pesticide compounds included in this method, the complete list of the compounds with their respective SRM transitions have been downloaded from the Pesticides Method Reference CD (provided with the manual, P/N 120390) into the instrument acquisition method. Each transition has been determined for optimal sensitivity and selectivity, with the complete list documented for TSQ Quantum XLS Ultra™ users.
Over 400 pesticides have been monitored in several matrices, such as wheat, black currants, and cucumber. The results of the most challenging pesticides in terms of activity and response are highlighted, showing calibration curves, repeatability and ion ratio stabilities.
The TSQ Quantum XLS Ultra is able to perform SRM with a higher mass resolution (0.1 Da) setting to allow for better selectivity. Not all pesticides in all matrices benefit from a higher mass resolution setting, but depending on the matrix and the compound analysed, there can be a significant improvement on the signal-to-noise ratio. Some examples are shown in the Advanced GC-MS/MS Experiment section of this application note.
The experimental configuration, sample preparation procedures, more experimental results and references are described in Thermo Scientific Application Note 52279.
Receive the complete application note at: www.thermoscientific.com/AN52279
Thermo Fisher Scientific Inc.
2215 Grand Ave. Pkwy, Austin, Texas 78728, USA
tel. (800) 532 4752
Website: www.thermoscientific.com/GCMS
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.