The Application Notebook
Thermo Scientific
Residuals of pesticides widely used in agriculture are monitored in foods for human consumption through the use of statutory Maximum Residue Levels (MRLs). Regulation EC 396/2005 adopted in the European Union sets MRLs for over 500 pesticides in over 300 food commodities, many at a default value of 0.01 mg/kg (the typical routine analytical method limit of determination). Thus, food safety laboratories must curb costs and turnaround times (often to <48 hours) while testing a wide array of foods for a large number of pesticide residues at concentrations levels 10 lower than 0.01 mg/kg. This is most often achieved using multiresidue methods with a combination of LC–MS-MS and/or GC–MS techniques to determine pesticide residues in a single generic solvent extract of the sample.
One such example is the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) procedure, which is based on acetonitrile extraction and dispersive solid-phase extraction. After the QuEChERS extraction, a solvent exchange is made to facilitate the GC injection. Although the QuEChERS extraction technique provides a fast turnaround time for a large number of samples with small sample volumes in the range of 10 g, the heavy matrix load of QuEChERS extraction requires increased robustness of the GC inlet system and increased selectivity from the MS-MS analyser. Described here is a high-quality, low-level analysis of pesticides in produce samples using the Thermo Scientific TSQ Quantum XLS Ultra GC–MS-MS system.
Figure 1: Comparison of U-SRM and standard SRM for pentachloroanisole and isodrin in wheat at 10 ppb level. Top: The chromatogram in U-SRM SRM (Q1 FWHM at 0.1 Da). Bottom: The same sample in standard mode (Q1 FWHM at 0.7 Da).
For most of the pesticide compounds included in this method, the complete list of the compounds with their respective SRM transitions have been downloaded from the Pesticides Method Reference CD (provided with the manual, P/N 120390) into the instrument acquisition method. Each transition has been determined for optimal sensitivity and selectivity, with the complete list documented for TSQ Quantum XLS Ultra™ users.
Over 400 pesticides have been monitored in several matrices, such as wheat, black currants, and cucumber. The results of the most challenging pesticides in terms of activity and response are highlighted, showing calibration curves, repeatability and ion ratio stabilities.
The TSQ Quantum XLS Ultra is able to perform SRM with a higher mass resolution (0.1 Da) setting to allow for better selectivity. Not all pesticides in all matrices benefit from a higher mass resolution setting, but depending on the matrix and the compound analysed, there can be a significant improvement on the signal-to-noise ratio. Some examples are shown in the Advanced GC-MS/MS Experiment section of this application note.
The experimental configuration, sample preparation procedures, more experimental results and references are described in Thermo Scientific Application Note 52279.
Receive the complete application note at: www.thermoscientific.com/AN52279
Thermo Fisher Scientific Inc.
2215 Grand Ave. Pkwy, Austin, Texas 78728, USA
tel. (800) 532 4752
Website: www.thermoscientific.com/GCMS
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.