November 18th 2024
A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).
Mass Spectrometry Techniques to Unravel the Heterogeneity of Glycoproteins
October 1st 2017Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collision-induced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.
Evaluating Substance Use via Wastewater Analysis: An Overview of Analytical Workflows
October 1st 2017Wastewater analysis has become an established approach for retrieving additional epidemiological information about the use of illicit drugs, alcohol, and tobacco at the population level. Here, we present an overview of the recent analytical frameworks and workflows for target and suspect analyses using low- and high-resolution mass spectrometry and discuss the latest advances in wastewater-based epidemiology (WBE).
Haloacetic Acid Analysis Using Two-Dimensional Matrix-Elimination Ion Chromatography
October 1st 2017The disinfectants commonly used to treat public drinking water can react with naturally occurring organic and inorganic matter in the source water to form disinfection byproducts such as haloacetic acids. Here, we describe the use of two-dimensional matrix-elimination ion chromatography (MEIC) for haloacetic acid analysis. This method minimizes the impact of matrix ions.
Detection and Characterization of Extractables in Food Packaging Materials by GC–MS
July 1st 2017In this study, general extract screening of food storage materials was done with nontargeted analytical methods to understand what analytes could potentially leach into food or beverages. GC and mass spectral deconvolution effectively separated analytes within the complex mixture and TOF-MS provided full mass range spectral data for identification. This workflow can be used for confident characterization of components present as extractables from food packaging materials.
Determination of Very Low Abundance Diagnostic Proteins in Serum Using Immunocapture LC–MS/MS
July 1st 2017There is growing interest in the determination of endogenous proteins in biological samples for diagnostic purposes, because a concentration increase or decrease of such proteins can allows us to monitor the state of a pathological condition such as cancer. Immunocapture LC–MS/MS analysis combines the workflow of conventional immunological assays with LC–MS analysis. This article describes typical challenges, such as cross reactivity and the mass spectrometer’s dynamic range, as well as the advantages of isoform differentiation and multiplexing.
Ion Mobility Spectrometers as Chromatographic Detectors
July 1st 2017Interest in connecting ion mobility spectrometry (IMS) to GC and especially to LC is now growing. One favorable property of IMS is that it can work with ambient pressure and can be easily connected to a gas or liquid chromatograph. Analytical applications of GC–MS and LC–MS are very different and encompass investigations into food, medical science, environment, drugs of abuse, chemical warfare agents, and explosives.
Quantitative Drug Metabolite Profiling without Radiolabels Using HPLC–ICP-MS
July 1st 2017In drug development, quantitative determination of a candidate drug and its metabolites in biofluids is an important step. The standard technique for quantitative metabolite profiling is radiolabeling followed by HPLC with radiodetection, but there are disadvantages to this approach, including cost and time, as well as safety and ethical concerns related to administering radiolabeled compounds to humans. Frank Vanhaecke and his research group at Ghent University have been developing an alternative technique, and he recently spoke to us about this work.
New Advice on an Old Topic: Buffers in Reversed-Phase HPLC
July 1st 2017Buffers are commonly used in reversed-phase liquid chromatography (LC) to control the ionization state of analytes. However, the addition of buffers is much more complex than simple pH control. Complex equilibria exist between these mobile-phase additives, the analytes, the silica surface, and even the stationary phase in certain circumstances. The addition of mass spectrometry (MS) as a primary detection technique makes decisions about mobile-phase additives even more crucial. In this column instalment, we use a model set of analytes and selected applications to demonstrate the effects that buffers can have not only on the selectivity of a separation, but also on the sensitivity of a reversed-phase analysis when using MS detection.
The Application of Computational Chemistry to Problems in Mass Spectrometry
May 1st 2017With computational chemistry, chemists can now study chemical phenomena by performing computationally intense calculations on computers rather than examining reactions and compounds experimentally. This is especially attractive when the laboratory experiments are time consuming, costly, dangerous, or difficult. Modern computational chemistry tools are capable of determining molecular structures, molecular spectra, and energetics, and of elucidating reaction pathways and chemical reaction products.
Appropriate Use of Mass Spectrometry in Clinical and Metabolic Research
March 1st 2017When adhering to sound analytical principles, the inclusion of mass spectrometry in the clinical laboratory can lead to accurate, selective, and precise quantitative methods by detecting new classes of compounds with greater efficiency and sensitivity than is possible with older, established technologies.
With this method, a single injection was sufficient to characterize the amino acid sequence with complete sequence coverage. In addition, glycosylation and drug-loaded peptides could be identified from MS/MS spectra. A drug-loaded peptide fragmentation mass spectra study yielded drug-specific fragments, which reinforced the confidence about the identifications. The results reveal the ability of the sheathless CZE–MS/MS method to characterize an ADC’s primary structure in a single experiment.
Forensic Applications of Isotope-Ratio Mass Spectrometry
March 1st 2017The isotopic profile of a material refers to the ratios of the stable isotopes of elements contained within, such as 2H/1H, 13C/12C, and 18O/16O. Biological, chemical, and physical processes cause variations in the ratios of stable isotopes; analysis of a material for its distinctive isotopic signature can thus be used to reveal information about its history. Isotope ratio mass spectrometry (IRMS) is a technique used to measure the relative abundance of isotopes in materials. Forensic investigators have used IRMS to measure a variety of materials, such as drugs, explosives, food, and human remains. In a recent web seminar, Lesley Chesson, the president of IsoForensics, Inc., explained how IRMS works and discussed the use of IRMS in forensic science, illustrating her discussion with several case examples.
Statistics for Analysts Who Hate Statistics, Part IV: Clustering
January 1st 2017Part IV of this series takes a closer look at clustering. Clustering can be very useful at observing your data when the sample dimensionality is large. This is a barbarian term meaning that diversity among your samples may be wide. In that case, the space reduction provided by principal component analysis (PCA) is not always convincing, because the simplification provided by a single two-dimensional plot erases too much information. Clustering allows you to preserve more information.
UHPLC–MS/MS Analysis of Penicillin G and Its Major Metabolites in Citrus Fruit
January 1st 2017In recent years, Huanglongbing (HLB), or citrus greening disease, has devastated citrus crops throughout the world. Penicillin G has been used to treat HLB infected trees with promising results. However, the metabolites produced from the degradation of penicillin G are known to cause potentially life-threatening allergic reactions; therefore, the concentration and presence of the metabolites must be carefully monitored. We have built and revised an analytical method based on Ultra High Performance Liquid Chromatography in combination with Tandem Mass Spectrometry (UHPLC-MS/MS) in order to identify and quantitate penicillin G and its major metabolites, penillic acid and penilloic acid, in citrus fruit and juice. Here, we discuss the chromatographic conditions and revisions that improved the precision and accuracy of our measurements.
Quantitation of Albumin and Creatinine in Urine by MALDI-TOF Mass Spectrometry
October 1st 2016This MS-based method represents a simple, fast, and attractive alternative to current immunoassay-based methods for the quantitation of albumin and creatinine in urine. This protocol enables the direct detection and measurement of the intact analytes from the same sample preparation, requiring only a 10-fold dilution of a urine sample into a MALDI-TOF matrix solution.
Nontargeted Metabolite Profiling in Next-Generation Plant Breeding: A Case Study in Malting Barley
October 1st 2016The power of nontargeted metabolite profiling is illustrated in a study focused on the determination of molecular markers in malting barley that are predictive of desirable malting quality for brewing applications. The metabolite extraction, detection, and analysis methods are high throughput and reproducible, and therefore, this approach represents a practical addition to the plant breeder’s molecular toolbox.