Hydrophilic Interaction Chromatography
April 1st 2008This article details the principles of hydrophilic interaction chromatography (HILIC) and its complementary selectivity to reversed-phase high performance liquid chromatography (HPLC). Advantages of the technique that result from the use of low-viscosity, high-organic concentration mobile phases will be demonstrated. For example, LC–mass spectrometry (MS) sensitivity is enhanced and higher flow rates and longer columns can be used effectively with such mobile phases in HILIC. Common stationary phases employed in HILIC are reviewed.
Rigid Porous Polymer Monoliths as Stationary Phases and Supports
April 1st 2008The never-ending quest for separation media that enable efficient high speed/high throughput chromatography has led to the design of stationary phases in monolithic formats with both vastly improved mass transfer properties and reduced discontinuity. Historically, porous polymer monoliths have first emerged in the late 1980s/early 1990s followed by their silica-based counterparts in the mid 1990s. The common denominator for both organic and inorganic monoliths was originally their use in HPLC columns. However, the range of applications of monolithic materials grew significantly since their early times. This short review summarizes information about monoliths produced in different shapes such as discs, tubes, columns, polymer layer open tubes (PLOT capillaries), and microfluidic devices, and presents selected applications including chromatographic separations, sample preparation, and enzyme immobilization.
Enhanced Stability Stationary Phases for HPLC
April 1st 2008This article presents an overview of high performance liquid chromatography stationary phases with enhanced stability at high pH, focusing on the methods by which they were prepared. Among the many alternatives, the authors introduce reversed phases based upon metallized silica supports that show superior performance during stability testing at high pH, when compared with conventional C18 phases based upon bare silica.
High-Temperature Liquid Chromatography
April 1st 2008The use of high temperature is playing an increasingly important role in high performance liquid chromatography (HPLC) method development and optimization. Major advantages of high-temperature LC (HTLC) include shortened separation time, increased efficiency, and reduction in the use of organic solvent, but the accompanying decrease in mobile phase viscosity provides a lowering of column back pressure, allowing even faster separations, use of longer columns, and use of smaller particles. Here the author summarizes some of the latest findings in HTLC and addresses issues raised when columns and analytes are heated beyond the "normal" operating conditions.
Update in the Technology and Applications of Chiral Stationary Phases
April 1st 2008An ever-increasing need for chiral separations has led to a more generic approach for screening a variety of chiral stationary phases. These new screening methodologies have been supported by new instrument development, new chiral product performance, and a new level of user knowledge. Supercritical fluid chromatography has continued to grow, supported by published applications from the separations industry. An expanded field of polysaccharide phases has been made available from a variety of sources with some unique variants of the most common cellulose and amylose derivatives.
Developments in HPLC Column Technology (2006–2008)
April 1st 2008In the leadoff article, columnist Ron Majors provides an overview of column developments. He looks at various alternatives to high-throughput separations including small porous particles, monoliths and superficially-porous particles. Microfluidics and parallel column systems provide further alternatives. An alternative approach to isocratic method development uses optimized stationary phase combinations. Brief coverage of new phases for hydrophilic interaction chromatography, high temperature operation, chiral and mixed mode columns and finally supercritical fluid chromatography columns round out the overview. At the conclusion, Majors speculates on future directions in column technology.
Recent Advances in Silica-Based Monolithic HPLC Columns
April 1st 2008In this article, silica-based monolithic columns are compared and contrasted to packed microparticulate columns. Some of the challenges developing commercial silica rods and encapsulated monolith columns are described, including the development of a 2-mm i.d. column. A study of wall effects in these monolith columns was performed. Future trends and challenges in improving the performance of silica-based monolith columns are described.
HPLC Column Technology 2008 — Back to the Future?
April 1st 2008Based upon early theoretical predictions of thought leaders in the beginnings of high performance liquid chromatography (HPLC), the continuous evolution of a reduction of particle sizes in HPLC column technology along with improvements in instrumentation has led to the increased use of particles in the sub-2-mm range, which places certain constraints on operating conditions. In this article, Gerard Rozing puts theory and practice into perspective when using small particles at increased operating pressure and, in particular, looks at thermal effects that can affect overall performance.
Gas Analyzer Pinpoints Types and Origins of CO2 Emissions
March 30th 2008Piccaro, Inc. announced an ultra-trace gas analyzer for precisely measuring isotopic CO2, a marker of the type of CO2, and its origin. The instrument is based upon cavity ring down spectroscopy (CRDS) technology, exclusively licensed from Stanford University, Stanford, California and further enhanced at Piccaro.
Ask the Editor: Centrifugal Partition Chromatography
March 10th 2008What is centrifugal partition chromatography, and what are its main applications? Steve Brown: Briefly, in centrifugal partition chromatography (CPC) one liquid acts as the stationary phase and a second solvent, containing the analytes, passes through it. Separation is achieved by partition of the solute between the two immiscible solvents comprising the mobile and stationary phases.
Chromatographic Society Spring 2008 Meeting
March 1st 2008The meeting, being held 21–22 May, will review the latest developments in stationary phase technologies for liquid chromatography. It will also include lectures on emerging stationary phase chemistries, specialised functional phases and small particle size packings The event will be of interest to all practitioners of separation science, but in particular those using liquid chromatography for problem solving and method development.