What is centrifugal partition chromatography, and what are its main applications? Steve Brown: Briefly, in centrifugal partition chromatography (CPC) one liquid acts as the stationary phase and a second solvent, containing the analytes, passes through it. Separation is achieved by partition of the solute between the two immiscible solvents comprising the mobile and stationary phases.
An LCGC reader recently submitted the following question:
What is centrifugal partition chromatography, and what are its main applications?
Briefly, in centrifugal partition chromatography (CPC) one liquid acts as the stationary phase and a second solvent, containing the analytes, passes through it. Separation is achieved by partition of the solute between the two immiscible solvents comprising the mobile and stationary phases. CPC instruments share some of the components of liquid chromatography systems, including pumps, injection valves, and detectors, but the separation is completed in a rotor containing multiple coils or channeled disks rather than in a column containing a solid stationary phase. The liquid stationary phase is held in place by spinning rotor’s centrifugal field and the mobile phase is pumped through. The partitioning of the analytes with the stationary and mobile phases effects the separation. Wanasundara and Fedec (1) provide a good description of CPC in an article that discusses lipid separations using the technique. They call it “a liquidâliquid chromatography with a sorbent, requiring two immiscible solvent phases.”
According to a recent press release from ChromSolutions (Hemel Hempstead, UK), “The affinity of the solute for each phase, measured by their partition coefficient, determines the order of elution. In CPC there are no columns to replace or silica to recycle and solvent consumption is low, which means operating costs for preparative and industrial scale systems can be significantly reduced. Since separation and purification is not based on interactions with a silica support, some potential harmful interactions between valuable and desired isolates and silica are avoided. Sample losses due to irreversible binding and denaturation are also eliminated thus enhancing yield and overall purity. The solvent system in CPC can also be changed very quickly to suit a wide and diverse range of sample types from the purification of petroleum products to peptides. The system is also a true moving bed one with continuous injection if required. Preparative purification can be carried out from low gram to kilogram scales. CPC technology has been accepted and adopted by the pharmaceutical, nutraceuticals, cosmetics, and petroleum industries. Applications are diverse and include purification of natural substances, essential oils, chlorophylls, lipids, antibiotics from fermentation broths, and polyphenols. With regard to biotechnology CPC systems are ideal for the purification of peptides, proteins, and monoclonal antibodies.”
(1) U. Wanasundara and P. Fedec, Food Technology 13, 726â730 (Sept 2002); http://www.pos.ca/common/pdf/publications/cpc.pdf.
Questions?
LCGC technical editor Steve Brown will answer your technical questions. Each month, one question will be selected to appear in this space, so we welcome your submissions. Please send all questions to the attention of "Ask the Editor" at lcgcedit@lcgcmag.com We look forward to hearing from you.
Pittcon 2025: Xiao Su Discusses His Work in Electrochemical Separations
March 13th 2025In this video interview with Xiao Su, he dives deeper into the research that he and his team are conducting with redox-active polymers and the applicability of electrochemical approaches in separation science.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Pittcon 2025: Kate Perrault Uptmor Talks About Multidimensional GC and Mentorship
March 13th 2025In our interview with Kate Perrault Uptmor, we asked her about the resources available for those interested in learning more about multidimensional chromatography, and current trends happening in separation science that are of particular note.
Analyzing Effects of Adverse Cardiovascular Events on Chronic Kidney Disease with HPLC
March 13th 2025Researchers investigated the potential association between plasma apolipoprotein M (APOM) levels and the risk of adverse cardiovascular outcomes in individuals with chronic kidney disease (CKD). Plasma sphingosine-1-phosphate (S1P) levels were measured by high performance liquid chromatography (HPLC).