Validation of this rapid bioanalytical method for the determination of moxidectin in cattle hair demonstrated that the method is accurate, reliable, and reproducible.
In this study, a simple method was used for extraction and concentration of trace organic compounds in water, followed by injection using a coiled wire filament and GC–MS analysis. Common semivolatile organic compound contaminants at low parts-per-billion levels were detected in less than 10 min.
Validation of this rapid bioanalytical method for the determination of moxidectin in cattle hair demonstrated that the method is accurate, reliable, and reproducible.
A look at the use of field-portable GC–MS with solid-phase microextraction, purge-and-trap, thermal desorption, and heated headspace sampling techniques to provide a fast response for in-field analysis of SVOCs in a wide variety of environmental-type samples including potable waters, tea, plants, and road gravel.
Validation of this rapid bioanalytical method for the determination of moxidectin in cattle hair demonstrated that the method is accurate, reliable, and reproducible.
A novel surface modification technology has been developed to reduce interactions between analytes and metal surfaces in HPLC instruments and columns. We demonstrate the impact of this technology on peak symmetry, peak area, and injection-to-injection and column-to-column reproducibility for several metal-sensitive analytes.
Modern ion mobility–mass spectrometry (IM–MS) is a key separation technology for detailed molecular characterization studies and also as part of emerging data acquisition strategies for demanding small molecule and several applications. Here is what you need to know.
In food analysis, many different biological matrices are investigated containing numerous compounds that can interfere with liquid chromatographyÐmass spectrometry (LC–MS) analysis. To overcome the challenges that arise with these highly complex matrices, the additional separation of analytes and matrix compounds complementing chromatographic separation is becoming more significant. In this article, the potential of IM-MS to increase selectivity and for additional identity confirmation is investigated. An extensive evaluation of IM-MS instruments was performed on a broad test set of food safety contaminants. The tested IM-MS platforms were DMS, TWIMS, low field DTIMS, and TIMS. CCS data were determined using the different instruments, and the ability to separate isomers and compounds of interest from sample matrix in the IM dimension was explored.
Microflow LC–MS-MS has seen a surge of attention, development, and popularity among research scientists and bioanalysts over the last few years. The potential of this technology to provide better sensitivity, less solvent waste, near-zero dead volume, and high through-put are a big part of this renewed interest. However, microflow LC techniques are hardly a new idea. More than 40 years ago, in 1974, a group at Nagoya University in Japan first developed a microcolumn liquid chromatography system, elements of which can be found in today’s commercial products. With the advances in technology over the last several years, development and implementation of this technique have been kicked into high gear. In this article, we discuss the history of microflow LC–MS-MS, the current state of the art, and where the future might lead for this rapidly growing technology.