The Application Notebook
Kanamycin and amikacin are aminoglycoside antibiotics used to treat serious bacterial infections. Amikacin is used for infections resistant to other aminoglycosides because it is less susceptible to enzymatic reactions.
Kanamycin and amikacin are aminoglycoside antibiotics used to treat serious bacterial infections. Amikacin is used for infections resistant to other aminoglycosides because it is less susceptible to enzymatic reactions. Purified kanamycin from Streptomyces kanamyceticus is mainly kanamycin A, from which amikacin is synthesized by acylation of the kanamycin A amino group with L-(-)-γ-amino-α-hydroxybutyric acid (L-HABA). Kanamycin A and L-HABA are, therefore, expected impurities in amikacin synthesis.
These antibiotics must meet specified purity criteria before clinical use. The United States Pharmacopeia (USP) monographs for the assay of kanamycin and amikacin use high-performance, anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) (1,2). Here we evaluate the USP assays using disposable gold on polytetrafluoroethylene (PTFE) working electrodes with a 4-potential waveform suitable for use with these electrodes. Disposable electrodes are more convenient than conventional electrodes because they are easier to install and do not require time-consuming electrode polishing. Compared to other disposable gold electrodes, the gold on PTFE electrodes have longer lifetimes and can operate at the hydroxide concentration used in the USP assays.
A Dionex ICS-3000 system and Chromeleon® Chromatography Data System software were used in this study. Kanamycin and amikacin (20 μL) were separated using a CarboPac® MA1 (USP L47) column set with 115 mM sodium hydroxide at 0.5 mL/min.
Figure 1 shows the <10 min separation of kanamycin and amikacin. Peak resolution was >4, (exceeding the USP requirement of 3); asymmetry for both antibiotics was 1.1 (USP requirement of <2). Retention time RSDs were 0.16 for kanamycin and 0.07 for amikacin for nine replicate injections (USP requirement of <0.3). Intra- and between-day peak area precisions (RSDs) were 0.99 and 1.3 for kanamycin and 1.2 and 2.3 for amikacin. These values suggest that this method effectively assays these antibiotics without column regeneration, and that using a disposable electrode with its associated waveform meets the current USP assay requirements.
Figure 1: Typical chromatograms of: (A) resolution solution (kanamycin 0.008 mg/mL and amikacin 0.02 mg/mL), (B) commercial kanamycin A sulfate sample, (C) commercial amikacin sample. Peaks: 1. kanamycin (8 μg/mL), 2. amikacin (20 μg/mL).
To demonstrate method capability for stability assays, these antibiotics were studied after exposure to elevated temperatures under acidic or basic conditions. For both antibiotics, most of the degradation products eluted within 10 min. An unidentified late-eluting peak at ~21 min is similar to a late-eluting peak reported for degraded streptomycin (3), which could interfere with quantification if a shorter run time is used. Under basic conditions, amikacin loses its acetylated group resulting in a kanamycin-like molecule.
This method matches and exceeds USP requirements, achieves good sensitivity, and has high sample throughput. Additionally, using disposable electrodes provide shorter equilibrium time and better electrode-to-electrode reproducibility.
(1) United States Pharmacopeia (USP), Kanamycin Sulfate, USP34-NF29, 3244.
(2) United States Pharmacopeia (USP), Amikacin Sulfate, USP34-NF29, 1846.
(3) Dionex Corporation, Application Note 181; Sunnyvale, CA.
CarboPac, Chromeleon, and UltiMate are registered trademarks of Dionex Corporation.
Dionex Corporation
1228 Titan Way, P.O. Box 3603, Sunnyvale CA 94088
tel. (408) 737-0700, fax (408) 730-9403
Website: www.dionex.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.