January 24th 2025
Here is some of the most popular content posted on LCGC International this week.
HPLC Analysis of Nonvolatile Analytes Using Charged Aerosol Detection
A new detection method based upon aerosol charging was examined for its applicability and performance with high performance liquid chromatography (HPLC). Our results demonstrate universal detection of nonvolatile analytes with response magnitude that is independent of analyte chemical properties, four orders of magnitude dynamic range, low nanogram, lower limits of detection, and < 2% relative standard deviation response variability. Broad applicability was demonstrated for a range of methods including those using gradient elution, reversed phase, hydrophilic interaction, and ion chromatography; normal and narrow bore column formats; and in combination with other detectors (for example, UV detectors, evaporative light-scattering detectors, and mass spectrometers).
Detecting Mushroom Peptide Toxins in Body Fluids by Capillary Electrophoresis
September 1st 2001The Death Cap mushroom is the cause of most mushroom-related poisonings in the world. The author has developed a highly efficient, sensitive CE technique that toxicologists and forensic analysts can use to determine the poisonous peptides in body fluids of affected patients.
Whole-Column-Imaging Detection for Capillary Isoelectric Focusing and Capillary Electrophoresis
May 1st 2001In this article, the authors review recent developments in the research of whole-column-imaging detection for capillary electrophoresis (CE). Whole-column-imaging detection was developed for capillary isoelectric focusing, for which it proved to be an ideal detector. Several whole-column-imaging detectors -- including refractive index gradient imaging, UV-absorption imaging, and fluorescence imaging detectors -- have been studied. The capillary isoelectric focusing UV-absorption imaging technique even has been commercialized. The development of whole-column-imaging detection itself facilitates CE studies in many directions such as in electrophoretic dynamics within narrow channels, new separation modes, and two-dimensional separations. Whole-column-imaging detection also finds application in capillary zone electrophoresis.
Turbulent-Flow LC for LC–MS and LC–MS–MS Bioanalysis
This month's "Directions in Discovery" gives a brief overview of turbulent- flow liquid chromatography, a technique for fast separations. Two examples demonstrate the use of the technology for high-throughput bioanalytical separations in drug discovery.