The LCGC Blog: Allowable Changes to Pharmacopeial HPLC Methods
October 18th 2016I started my career working in a Quality Control laboratory. I'm familiar with the constraints that must be imposed to ensure consistent global standards and the pace at which change can be implemented without loss of control either within a business or across an industry. OK-scene set.
Characterizing Pigments in Peppers
October 17th 2016A group of researchers have characterized carotenoid and chlorophyll in different sweet bell peppers (Capsicum annuum L.) using offline multidimensional supercritical fluid chromatography (SFC) combined with reversed-phase liquid chromatography (LC) for the first time.
GC–MS Analysis of Marine Organotin Pollution
October 5th 2016The ban on organotins has not led to a significant reduction in marine pollution according to research published by the Polish Academy of Sciences. Researchers found unacceptable levels of harmful organotins in the muscle and liver tissues of fish species collected in the southern Baltic Sea coastal zone, exceeding the good environmental status boundaries.
Tips & Tricks: GPC/SEC for Membrane Analysis
October 5th 2016Membranes play an important role in living species as well as in technical processes, including in human care (for example, in kidney treatment). This instalment of Tips & Tricks discusses gel permeation chromatography/size-exclusion chromatography (GPC/SEC) for membrane analysis.
Meeting Review: Advances in Microcolumn and Related Separation Technologies
October 5th 2016The first meeting in The Chromatographic Society’s diamond anniversary year brought together world-renowned speakers alongside past presidents of the Society and delegates from academia, industry, and scientific instrument and technology companies at the Institute of Engineering and Technology in central London. The presentations included discussions on gas chromatography (GC), liquid chromatography (LC), capillary electrochromatography (CEC), and supercritical fluid chromatography (SFC) from both academic and industrial perspectives - providing valuable insight into contemporary trends in chromatographic techniques.
Determination of Cannabinoid Content and Pesticide Residues in Cannabis Edibles and Beverages
October 1st 2016As a result of the rapidly growing cannabis industry, many testing laboratories are looking for efficient, reliable, and cost-effective analytical methods to analyze chemical residues, such as pesticides, mycotoxins, solvent residues, terpenes, and heavy metals, as well as cannabinoid concentration in cannabis-infused edibles and beverages. In this article, QuEChERS (quick, easy, cheap, effective, rugged and safe), a sample preparation technique widely adopted in the food testing industry, is introduced to the discipline of forensic testing as a viable method for the extraction of pesticides and cannabinoids in various complex sample matrices. Comparison of the claimed amounts of cannabinoids versus the actual amounts as well as the pesticide residue levels in edible and beverage samples is discussed.
Ensuring the Safety of the Food Supply: Speeding Up Arsenic Speciation Analysis
October 1st 2016Speciation analysis of elemental contaminants in food and beverages has received much attention in recent years. Recent regulations limit inorganic arsenic, taking into account that arsenic toxicity is dependent on the species present. The analysis procedure thus needs to be able to differentiate inorganic from organic arsenic forms. LC-ICP-MS is commonly used for separation and detection of arsenic species, with the most widely used implementation being based on ion exchange and characterized by relatively long run times. Testing of increasing sample numbers means that analysis speed becomes a focal point for potential improvements. We developed a method based on ion interaction chromatography, allowing a reduction in run times to
Determination of Contaminants in Beer Using LC–MS/MS and ICP-MS
October 1st 2016The German Beer Purity Law of 1516 makes beer one of the best analyzed food products with the highest standards regarding quality, freshness, appearance, and flavor. According to this law, beer is allowed to contain hops, malt, yeast, and water as ingredients. Of course, beer also contains major B vitamins, bitter substances, and minerals and trace elements (such as Ca, Na, Mg, and Zn) that are important for human nutrition. However, undesirable substances such as pesticides and heavy metals (for instance Cd, Pb, Hg, Sb, and As) can be found as well, mostly as contaminants in brewing water and grains. In particular, the herbicide glyphosate has to be monitored carefully since it is discussed as a possible carcinogenic. The chromatography of glyphosate is challenging because of its high polarity. A well-established method including a derivatization step with 9-fluorenylmethyl chloroformate (FMOC) followed by LC–MS analysis is time-consuming and also susceptible to errors. A sample pretreatment without derivatization is desirable because it is faster and cheaper. A triple quadrupole mass spectrometer optimizes the analytical procedure and establishes a routine method for the analysis of glyphosate in beer. For the determination of low element concentrations, such as As, Se, Pb, Cd, and Zn, inductively coupled plasma-mass spectrometry (ICP-MS) is applied.
Extraction of Micropollutants From Size-Limited Solid Samples
October 1st 2016The quantitative extraction and subsequent purification of trace contaminants from (semi-)solid environmental and food matrices of regular size (that is, a few grams) is still recognized as a challenging task, typically accomplished through relatively complex off-line multistep treatment procedures. When these conventional sample preparation procedures are applied to the treatment of size-limited samples (of less than 1 g), the difficulties increase. This review discusses the different analytical strategies that can be adopted to overcome (or at least reduce) these difficulties when chromatographic techniques are involved for final instrumental determination.
Gas Cylinder Safety, Part 1: Hazards and Precautions
October 1st 2016Many gas chromatographers are not fully aware of safe practices for handling high-pressure gas cylinders. Gas chromatography (GC) operators should be trained to properly transport, install, connect, and maintain their gas supplies, as well as to deal with emergencies. In the first of a two-part series, this month’s “GC Connections” examines the principal hazards and safety issues surrounding the compressed gas cylinder. Next month’s instalment will present safe procedures for routine cylinder use.