The ban on organotins has not led to a significant reduction in marine pollution according to research published by the Polish Academy of Sciences. Researchers found unacceptable levels of harmful organotins in the muscle and liver tissues of fish species collected in the southern Baltic Sea coastal zone, exceeding the good environmental status boundaries.
Photo Credit: adamBHB/Getty Images
The ban on organotins (OTs) has not led to a significant reduction in marine pollution according to research published by the Polish Academy of Sciences (1). Researchers found unacceptable levels of harmful organotins in the muscle and liver tissues of fish species collected in the southern Baltic Sea coastal zone, exceeding the good environmental status (GES) boundaries.
Organotins have been used for decades in anti-fouling coatings intended to prevent the settlement and growth of aquatic organisms on structures such as ship hulls, fish cages, and oil rig supports. However, a spate of studies highlighting the toxic effects of OTs on the wider marine environment has led to a reassessment of their use. In particular, OTs such as tributylin (TBT) and triphenyltin (TPhT) were found to disrupt the endocrine system of organisms, resulting in sterility and species extinction (2,3).
After considerable legislative debate, the International Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention) came into force on the 17 September 2008 globally (4). European Union (EU) flagged ships and ports complied with the convention requirements from July 2003 (5). The convention aimed to ban the application of organotin anti-fouling paints on ships in the hope of reducing OT contamination levels.
To assess the success of this ban researchers collected fish samples from three different marine environments along the Baltic Sea. The Gulf of Gdansk, known for large international seaports, marine traffic, and large scale shipyard activity, the Vistule Lagoon, dominated by freshwater flora and fauna with fishing harbours and marinas, and the Szczecin Lagoon, a key point in the Odra River Estuary and acts as a “biological filter” for river waters and the city of Szczecin.
Muscle and liver tissues from the fish species were subjected to sonication extraction, followed by derivatization. Samples were purified before extracts were injected into a gas chromatographic system coupled with a mass spectrometric detector (GC–MS). Organotin concentrations were determined on the basis of response factors derived from daily repeated injections of a standard mixture of derivatized compounds (CHIRON).
Results indicated that in the six to seven years since the total ban was fully implemented concentrations of butyltins (BTs) in fish muscles and livers have remained high in comparison to pre-ban concentrations. TBT samples exceeded GES boundaries recommended in the HELCOM (Baltic Marine Environment Protection Commission) CORESET for TBT in seafood.
The presence of OTs is not surprising as they are known to reside in sediments for years and not degrade (6,7), however, these results highlight the importance of continued studies into the subject and the authors recommend that OTs continue to be monitored in marine environments because of the threat butyltins can pose to marine life.GC–MS Analysis of Marine Organotin Pollution
References
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.