The ban on organotins has not led to a significant reduction in marine pollution according to research published by the Polish Academy of Sciences. Researchers found unacceptable levels of harmful organotins in the muscle and liver tissues of fish species collected in the southern Baltic Sea coastal zone, exceeding the good environmental status boundaries.
Photo Credit: adamBHB/Getty Images
The ban on organotins (OTs) has not led to a significant reduction in marine pollution according to research published by the Polish Academy of Sciences (1). Researchers found unacceptable levels of harmful organotins in the muscle and liver tissues of fish species collected in the southern Baltic Sea coastal zone, exceeding the good environmental status (GES) boundaries.
Organotins have been used for decades in anti-fouling coatings intended to prevent the settlement and growth of aquatic organisms on structures such as ship hulls, fish cages, and oil rig supports. However, a spate of studies highlighting the toxic effects of OTs on the wider marine environment has led to a reassessment of their use. In particular, OTs such as tributylin (TBT) and triphenyltin (TPhT) were found to disrupt the endocrine system of organisms, resulting in sterility and species extinction (2,3).
After considerable legislative debate, the International Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention) came into force on the 17 September 2008 globally (4). European Union (EU) flagged ships and ports complied with the convention requirements from July 2003 (5). The convention aimed to ban the application of organotin anti-fouling paints on ships in the hope of reducing OT contamination levels.
To assess the success of this ban researchers collected fish samples from three different marine environments along the Baltic Sea. The Gulf of Gdansk, known for large international seaports, marine traffic, and large scale shipyard activity, the Vistule Lagoon, dominated by freshwater flora and fauna with fishing harbours and marinas, and the Szczecin Lagoon, a key point in the Odra River Estuary and acts as a “biological filter” for river waters and the city of Szczecin.
Muscle and liver tissues from the fish species were subjected to sonication extraction, followed by derivatization. Samples were purified before extracts were injected into a gas chromatographic system coupled with a mass spectrometric detector (GC–MS). Organotin concentrations were determined on the basis of response factors derived from daily repeated injections of a standard mixture of derivatized compounds (CHIRON).
Results indicated that in the six to seven years since the total ban was fully implemented concentrations of butyltins (BTs) in fish muscles and livers have remained high in comparison to pre-ban concentrations. TBT samples exceeded GES boundaries recommended in the HELCOM (Baltic Marine Environment Protection Commission) CORESET for TBT in seafood.
The presence of OTs is not surprising as they are known to reside in sediments for years and not degrade (6,7), however, these results highlight the importance of continued studies into the subject and the authors recommend that OTs continue to be monitored in marine environments because of the threat butyltins can pose to marine life.GC–MS Analysis of Marine Organotin Pollution
References
An LC–HRMS Method for Separation and Identification of Hemoglobin Variant Subunits
March 6th 2025Researchers from Stanford University’s School of Medicine and Stanford Health Care report the development of a liquid chromatography high-resolution mass spectrometry (LC–HRMS) method for identifying hemoglobin (Hb) variants. The method can effectively separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and accurately identify them in intact-protein and top-down analyses.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.