The Application Notebook
Viruses are packets of infectious nucleic acid (either DNA or RNA) surrounded by a protective coat consisting of a large number of protein subunits. Because viruses can cause various diseases - some life-threatening - characterizing virus particles thoroughly in terms of their size distribution, aggregation and absolute counts-per-unit volume is of extreme importance.
Wyatt Technology Corporation, Santa Barbara, California, USA.
Viruses are packets of infectious nucleic acid (either DNA or RNA) surrounded by a protective coat consisting of a large number of protein subunits. Because viruses can cause various diseases — some life-threatening — characterizing virus particles thoroughly in terms of their size distribution, aggregation and absolute counts-per-unit volume is of extreme importance.
Though size exclusion chromatography (SEC) has been the primary tool for separating aggregates of molecules, it is generally not appropriate for fractionating viruses because viruses and their aggregates are subject to shearing degradation by the stationary phase. Moreover, they can also be caught by the columns because of their large sizes.
The Eclipse, a particle separation system based upon field flow fractionation (FFF), effectively replaces SEC as a perfect alternative for virus characterization. Because it is analogous to an HPLC separation, the Eclipse — combined with MALS — makes a physical separation of the particles and then sizes them directly as they elute.
This application note reports the results obtained from a set of virus particles fractionated by Eclipse and sized by the 18-angle DAWN EOS on-line multi-angle light scattering instrument.
Figure 1 shows the radius measured by the DAWN EOS detector (from initial slope of angular dependence) versus elution time for two different virus strains. The plots show clearly that aggregates were found in both viruses and much more in Virus 2. Results from duplicate injections of Virus 1 show the excellent reproducibility of the Eclipse-MALS system.
Figure 1
The results are also shown by the cumulative number distribution plots in Figure 2. The cumulative number distribution yields quantitative information on the percentage of aggregates present in each virus strain: 5% for Virus 1 and 95% for Virus 2.
Figure 2
The success of the virus characterization demonstrated above confirms that the Eclipse-MALS approach is an indispensable tool for charactering virus particles — and other colloidal particles — in solution. This approach is especially important when the absolute particle distributions are vital.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
tel. +1 805 681 9009 fax +1 805 681 0123
Website: www.wyatt.com
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.