The Application Notebook
Viruses are packets of infectious nucleic acid (either DNA or RNA) surrounded by a protective coat consisting of a large number of protein subunits. Because viruses can cause various diseases - some life-threatening - characterizing virus particles thoroughly in terms of their size distribution, aggregation and absolute counts-per-unit volume is of extreme importance.
Wyatt Technology Corporation, Santa Barbara, California, USA.
Viruses are packets of infectious nucleic acid (either DNA or RNA) surrounded by a protective coat consisting of a large number of protein subunits. Because viruses can cause various diseases — some life-threatening — characterizing virus particles thoroughly in terms of their size distribution, aggregation and absolute counts-per-unit volume is of extreme importance.
Though size exclusion chromatography (SEC) has been the primary tool for separating aggregates of molecules, it is generally not appropriate for fractionating viruses because viruses and their aggregates are subject to shearing degradation by the stationary phase. Moreover, they can also be caught by the columns because of their large sizes.
The Eclipse, a particle separation system based upon field flow fractionation (FFF), effectively replaces SEC as a perfect alternative for virus characterization. Because it is analogous to an HPLC separation, the Eclipse — combined with MALS — makes a physical separation of the particles and then sizes them directly as they elute.
This application note reports the results obtained from a set of virus particles fractionated by Eclipse and sized by the 18-angle DAWN EOS on-line multi-angle light scattering instrument.
Figure 1 shows the radius measured by the DAWN EOS detector (from initial slope of angular dependence) versus elution time for two different virus strains. The plots show clearly that aggregates were found in both viruses and much more in Virus 2. Results from duplicate injections of Virus 1 show the excellent reproducibility of the Eclipse-MALS system.
Figure 1
The results are also shown by the cumulative number distribution plots in Figure 2. The cumulative number distribution yields quantitative information on the percentage of aggregates present in each virus strain: 5% for Virus 1 and 95% for Virus 2.
Figure 2
The success of the virus characterization demonstrated above confirms that the Eclipse-MALS approach is an indispensable tool for charactering virus particles — and other colloidal particles — in solution. This approach is especially important when the absolute particle distributions are vital.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
tel. +1 805 681 9009 fax +1 805 681 0123
Website: www.wyatt.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.