The Application Notebook
There is considerable attention placed on the synthesis and characterization of polypeptoids, a new class of synthetic polypeptide analogues. Because of intense hydrogen-bonding among chains of these polymers, aggressive solvents such as hexafluoroisopropanol (HFIP) must be used as the mobile phase to support solubility.
There is considerable attention placed on the synthesis and characterization of polypeptoids, a new class of synthetic polypeptide analogues. Because of intense hydrogen-bonding among chains of these polymers, aggressive solvents such as hexafluoroisopropanol (HFIP) must be used as the mobile phase to support solubility. Furthermore, highly reproducible data is needed to obtain subtle molecular weight distribution trends. To save considerable amounts of harmful and expensive solvents we applied mixed bed GPC columns and the EcoSEC semi-micro GPC system saving both, analysis time and solvent.
Polypeptoids are similar to peptides. While the side chain of the amino acid residue in a peptide is attached to the alpha carbon, the side chain of a polypeptoid is attached to the nitrogen. The resulting structure imparts proteolytic stability, may mimic polypeptide behaviour and could have novel polymer properties for commercial use, as they are close in structure to nylon-type polyamides. One of the groups most active in this area is Dr Li Jia and co-workers at the University of Akron who are investigating different synthetic routes for the formation of polypeptoids with alternating block structures.1–4
A series of poly- β-alkylalanoids, obtained by using living alternating copolymerization of N-alkylaziridines and carbon monoxide,5 were characterized using an EcoSEC GPC system with TSK-GEL mixed-bed columns and hexafluoroisopropanol (HFIP) as the mobile phase. The EcoSEC GPC system is ideally suited for the detailed study of polymerizations owing to its superior instrument performance. The unprecedented reproducibility, accuracy and RI sensitivity of this system is due to its design: accurate temperature control, dual-compartment oven control, newly engineered pumping system, low RI dead volume and low injection volume.
A series of block poly-β -alkylalanoids, provided by Dr Li Jia, were characterized by SEC analysis. Polymers were dissolved as received in HFIP at a level of 0.5 mg/mL, and passed through a 0.5 µm membrane filter. The column set used was a series of two TSKgel GMHHR-M* columns (4.6 mm i.d. x 15 cm, Tosoh Bioscience) packed in HFIP. These mixed-bed columns have a separation range of about 102 to 4 x 106 . The mobile phase consisted of HFIP containing 5 mmol/L sodium trifluoroacetate to help prevent sample adsorption. An EcoSEC GPC system was used at a flow rate of 0.35 mL/min at a column and system temperature of 40 °C. Injection volume was 10 µL. A refractive index monitor was used for detection.
Calibration was based on a series of nine poly(methylmethacrylate) (PMMA) standards (American Polymer Standard) ranging in molecular weight from 2825 to 2100000. A cubic fit was used for the calibration curve (correlation -0.967) (Figure 1).
Samples of block poly-β -alkylalanoids were chosen that encompassed a wide selection of different block lengths and compositions. SEC chromatograms of three representative samples are shown in Figures 2 to 4 and molecular weights summarized in Table 1. As indicated, all samples had narrow polydispersity values of 1.2, as expected from living polymerization reactions. Because PMMA was used for calibration, which has a different composition than the blocks, reported molecular weight (MW) data are relative or apparent MW, and should only be used for comparisons among samples. In fact, these values are significantly higher than calculated MW of samples computed from experimentally determined block lengths and block composition. Overestimation of MW implies that these blocks have highly extended conformations in HFIP as compared to PMMA. However, to obtain more accurate MW data, standards that are compositionally similar to polypeptoids, such as polyamide standards (e.g., nylon 66) or an on-line viscometer with PMMA universal calibration or a light scattering detector should be used.
For this column set, the exclusion limit is about 1.75 mL (5 min), while the total permeation volume is close to 3.5 mL (10 min). As indicated by the chromatograms, these samples contain almost symmetrical, narrow polymer profiles eluting in the range of about 6 min, while residual solvents, water and dissolved air elute in the 10 to 12 min range. There is very little tailing, and in all cases, the peak tail returns to the initial baseline with no baseline drift. This feature allows for highly reproducible data not available with conventional GPC systems.
The MW data in Table 1 are averaged values from three consecutive injections of the three representative samples, along with the percent relative standard deviations of each set of three injections. The average percent standard deviations range from about 0.04 to 0.5%, with grand average of 0.3% for Mn and 0.2% for Mw. These percent standard deviations are more than 10x lower than the values reported for polyamides in HFIP mobile phase.6 Lastly, the percent relative standard deviation of polydispersities (PD) ranges from 0.1 to 0.5%. The high accuracy allows for the detailed study of polymerization reactions.
The EcoSEC GPC System and a set of TSK-GEL mixed-bed columns were used successfully for obtaining high quality MWD data of a series of block poly- -alkylalanoids with HFIP as the mobile phase in under 15 minutes. The apparent MW averages based of PMMA calibration ranged from 27000 to 49000 for Mn and from 30000 to 61000 for Mw with an average polydispersity of 1.20. Because of the EcoSEC GPC system's excellent flow rate and temperature control and baseline stability, average MW values ranged from 0.2 to 0.3% relative standard deviation, a 10-fold reproducibility improvement as compared to SEC literature data of polyamides using a similar mobile phase system.
1. L. Jia et al., Chem. Commun., 1436–1437 (2001).
2. L. Jia et al., JACS, 124, 7282–7283 (2002).
3. J. Zhao et.al., J. Polym. Sci., Part A: Polymer Chemistry, 41, 376–385 (2003).
4. G. Liu and L. Jia, Angew. Chem. Int. Ed., 45, 129–131 (2006).
5. L.A. Roper et al., FASEB Journal, 22, 1061.8. (2008).
6. E.C. Robert et al., Pure Appl. Chem., 76, 2009–2025 (2004).
*TSK-GEL GMHHR-M, 5 µm, 4.6 mm i.d. x 15 cm columns are available from Tosoh Bioscience as custom columns.
Tosoh Bioscience GmbH
Zettachring 6, 70567 Stuttgart, Germany
tel. +49 711 13257 0 fax +49 711 13257 89
E-mail: info.sep.eu@tosoh.com Website: www.tosohbioscience.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.