A simple and efficient supported liquid extraction (SLE) procedure for the extraction of THC and metabolites from human plasma at low levels has been developed.
A simple and efficient supported liquid extraction (SLE) procedure for the extraction of THC and metabolites from human plasma at low levels has been developed. ISOLUTE SLE+ columns and plates offer a simple, fast, and effective alternative to traditional liquid-liquid extraction providing high analyte recoveries, eliminating emulsion formation, and minimizing matrix effects in LC–MS-MS analysis.
Globally, cannabis is one of the most widely used illicit drugs. The naturally occurring cannabinoids found in hemp species bind to receptors in the brain and cause sensations of relaxation and calm. Widespread legislation against the use of cannabis has led to the necessity for rapid and reliable methods for the analysis and quantitation of cannabinoids and metabolites. The most prevalent markers in biological samples taken from cannabis abusers are Δ9 tetrahydrocannanbinol (THC), cannabidiol, cannabinol in addition to the major THC metabolites;11-hydoxy-Δ9-THC, and 11-nor-9-carboxy-Δ9-THC.
This application note describes the extraction of THC and metabolites from a 200 µL plasma sample using the ISOLUTE SLE+ 200 96-well plate (part #820-0200-P01). Method parameters have been optimized to maximize recoveries and minimize ion suppression in LC–MS analysis.
Supported Liquid Extraction
Sample pretreatment: Dilute 100 µL plasma sample 1:1(v/v) with 1% aqueous formic acid.
Sample loading: Load pretreated plasma (200 µL) samples onto the plate and apply a pulse of vacuum to initiate flow. Leave the samples to absorb for 5 min.
Analyte Elution: Elution 1: Apply 500 µL dichloromethane, then a short pulse of vacuum and wait 5 min.
Elution 2: Apply a further 500 µL aliquot of dichloromethane, wait 5 min then apply a short pulse of vacuum to ensure complete elution.
Post Extraction: Evaporate eluate to dryness and reconstitute in 500 µL of 0.1% formic acid in water/acetonitrile (50:50, v/v).
Analyze extracted samples using a Waters Acquity UPLC with an Acquity UPLC BEH C18 column (1.7 µm, 50 × 2.1 mm id) at 35 °C. Mobile phase A was 0.1% formic acid aq and mobile phase B was 0.1% formic acid in methanol, run isocratically at a flow rate of 0.5 mL/min, 10% A and 90% B. Sample injection volumes were 5 µL. The detector was a Premier XE triple quadrupole mass spectrometer (Waters) equipped with an electrospray interface, run in positive ion mode.
Recoveries above 80% with RSDs below 10% were demonstrated as shown in Figure 1. THC-OH, cannabidiol, and THC-COOH exhibit recoveries of 95% or greater.
Figure 1: % recoveries of THC and metabolites from plasma and example chromatogram of THC and metabolites.
This method demonstrates robust and effective extraction of THC and metabolites using ISOLUTE SLE+ 200 96 well-plates. The method could easily be scaled up and optimised for larger sample volumes (up to 1 mL) using ISOLUTE SLE+ columns.
(1) L. Williams, "Extraction of THC and metabolites from Plasma using ISOLUTE SLE+." Application Note AN 723 (available from www.biotage.com ) (2010).
Biotage, LLC
10430 Harris Oaks Blvd., Suite C, Charlotte, NC 28269
Email: product_info@biotage.com
Website: www.biotage.com
Innovative cryogen-free ambient air monitoring of trace-level air toxics at high humidity
November 27th 2024This application note presents an advanced analytical system for the sensitive detection of trace-level air toxics in humid ambient air samples, in accordance with US EPA Method TO-15A. The cryogen-free preconcentration and thermal desorption approach, coupled to GC-MS, delivers exceptional chromatographic performance even for highly volatile and polar compounds. The system meets the stringent detection limit requirements of the latest air monitoring regulations, with method detection limits as low as 0.7 pptv. This innovative analytical solution provides a robust, cost-effective platform for the reliable quantification of hazardous air pollutants, enabling compliance with regulatory standards.
Continuous, cryogen-free on-line monitoring of PAMS in ambient air using hydrogen carrier gas
November 27th 2024This application note explores an efficient, helium-free method for continuous monitoring of ozone precursors in ambient air, aligned with EPA PAMS requirements. By using hydrogen as the carrier gas, this approach achieves faster run times, stable retention times, and effective separation of volatile organic compounds. A case study from New York City highlights the system's performance in urban air quality monitoring, capturing shifts in pollutant levels during periods of reduced traffic. With remote operability and cryogen-free functionality, this method offers a reliable and sustainable solution for real-time air quality analysis in both urban and remote environments.
Measurement of PFAS in indoor air and investigation of source materials
November 27th 2024This application note demonstrates the use of high through-put automated thermal desorption (TD) coupled with GC-MS/MS for comprehensive PFAS measurement in indoor air. The method enables accurate quantification of a wide range of PFAS compounds, including neutral and volatile species, down to ultra-trace levels. Applying this approach, the study profiled PFAS contamination across different indoor environments, from workplaces to residences. When using sampling chambers to test materials, the PFAS they release into the indoor air can be identified, along with quantifying the emission rate of such releases.