LCGC Asia Pacific
The process of investigating a suspicious fire includes many different types of analyses. An essential step in confirming the presence of a liquid accelerant is gas chromatography (GC); detection with a mass spectrometer (MS) provides an accurate confirmation of both the presence and identity of an accelerant. In arson analysis, the sample preparation for GC–MS analysis is typically performed by headspace or solvent extraction.
The process of investigating a suspicious fire includes many different types of analyses. An essential step in confirming the presence of a liquid accelerant is gas chromatography (GC); detection with a mass spectrometer (MS) provides an accurate confirmation of both the presence and identity of an accelerant. In arson analysis, the sample preparation for GC–MS analysis is typically performed by headspace or solvent extraction.
Figure 1
The headspace sampling is followed by automated thermal desorption (ATD) sample introduction. ATD is known as a very sensitive and clean method, with the drawback that historically it was a "one shot" technique;1 once the sample is consumed, it is unavailable for re-analysis.
The novel thermal desorption technology used here includes sample re-collection, allowing laboratories to re-collect a portion of the sample so that it is available for additional analyses and archival, removing the "single shot" nature of ATD sample introduction. The following study will demonstrate sample re-collection and its effectiveness in arson investigation.
A test sample of wood was burned with gasoline as an accelerant. The sample was collected in a 0.5 L glass jar; the accelerants were extracted from the jar by purging the headspace with clean, dry air, at 50 mL/min, while heating to 80 °C for 2 min. The air samples were collected onto an ATD sample tube packed with Tenax TA adsorbent, at room temperature. A PerkinElmer TurboMatrix 650 ATD introduced the air sample into the GC–MS system. The GC–MS system used in this study was the PerkinElmer Clarus 600 T GC–MS.
Automated thermal desorption takes place in two steps — the primary and the secondary desorption. During each step the sample flow can be split; sample re-collection is activated only during the secondary desorption. The split effluent is directed to a sample tube, either the original tube or a new tube, rather than to vent. The number of cycles of sample re-collection is not limited; in methods using a high secondary split flow, duplicate data with high precision has been collected for more than 20 analyses of the same sample.
These results demonstrate that re-collection provides data consistent with the initial analysis. Beyond duplicate analysis, a re-collected sample can be stored for archival, in instances where a second analysis is required at a later date or analysed with a different split flow, achieving increased sensitivity or reduced sample size.
As with all forensic analyses, the data generated in arson investigation must be legally defensible; this creates the need for duplicate sample analysis as well as sample archival. The ability to re-collect a portion of a sample allows laboratories to perform multiple analyses of the same sample, as well as preserve a portion of the sample for archival. Thermal extraction combined with dynamic headspace and automated thermal desorption, using sample re-collection, is clearly a clean and very highly sensitive sampling technique in arson investigation.
William Goodman, PerkinElmer Inc., Waltham, Massachusetts, USA.
1. W. Bertsch and Q. Zhang, Anal Chim Acta, 236, 183–95 (1990).
PerkinElmer Inc.
940 Winter Street, Waltham, Massachusetts 02451, USA
tel. +1 800 762 4000 or +1 203 925 4602
fax +1 203 944 4904
Website: www.perkinelmer.com
Determination of 3-MCPD and Glycidol in oil by ISO 18363-1, AOCS Cd 29c-13, DGF C-VI 18 (10)
January 28th 2025Fully automated method for 3-MCPD and Glycidol determination in edible oil by GC-MS, based on the widely used methods ISO 18363-1, AOCS Cd 29c-13, and DGF C-VI 18 (10). The automated GC-MS determination of 3-MCPD and glycidol in edible oils with evaporation step and GC column backflush ensures low LODs by eliminating excess derivatization reagent for improved method stability and system ruggedness.
Determination of 3-MCPD, 2-MCPD and Glycidol in oil and fat by ISO 18363-4 Zwagerman/Overman
January 28th 2025Fully automated method for 3-MCPD, 2-MCPD and Glycidol determination in Edible Oil and Fat based on ISO 18363-4 - Zwagerman/Overman with validation data. A recent upgrade to PTV injection has further improved the quality and robustness of results. Fatty acid esters of 3- and 2-monochloropropanediol (3-MCPD-e, 2-MCPD-e) and glycidol (Gly-e) are process contaminants that are formed, for example, when edible oils and fats are refined. After ester cleavage during digestion in the human body they pose a relevant health risk and therefore need to be determined in edible oils and fats and in fat containing food.
Automated Analysis of MOSH/MOAH in food and packaging extracts by LC-GC-FID
January 28th 2025The AppNote describes the fully automated determination of MOSH/MOAH in Food and Packaging extracts following DIN EN 16995. Industrial production, processing and transportation invariably put food at risk of contamination with MOSH/MOAH. To ensure a reasonable cost benefit balance, high laboratory productivity and good quality of results, leading contract laboratories increasingly strive to automate their processes. An example is the determination of MOSH/MOAH using a LC-GC-FID Coupling Platform. Depending on the sample matrix, additional automated sample preparation by aluminum oxide clean-up, epoxidation, and/or saponification is necessary prior to analysis. The dedicated evaluation software integrates the complex MOSH/MOAH chromatograms accurately and reproducibly.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.