LCGC Asia Pacific
Multidimensional liquid chromatography (MDLC) techniques are essential for the separation of highly complex proteomic samples. Advantages of off-line MDLC techniques over on-line approaches include high flexibility in choice of column dimensions and mobile-phase compositions, and the ability to reanalyse sample fractions. Here we present a fully automated off-line two-dimensional chromatographic approach for the analysis of proteomic samples using an UltiMate 3000 system optimized for proteomics MDLC.
Multidimensional liquid chromatography (MDLC) techniques are essential for the separation of highly complex proteomic samples. Advantages of off-line MDLC techniques over on-line approaches include high flexibility in choice of column dimensions and mobile-phase compositions, and the ability to reanalyse sample fractions. Here we present a fully automated off-line two-dimensional chromatographic approach for the analysis of proteomic samples using an UltiMate 3000 system optimized for proteomics MDLC.
Off-line two-dimensional (2D) chromatographic experiments were performed with an UltiMate 3000 system (Dionex) equipped with a dual gradient pump with membrane degasser (DGP3600), flow manager module with active flow-split technology (FLM-3100), autosampler with integrated micro-fraction collector (WPS-3000), and two UV detectors (VWD-3400). The system was coupled on-line to an ion-trap mass spectrometer (HCTultra)
The workflow for automated off-line 2D-LC is as follows: (1) a first-dimension LC separation with fraction collection, followed by (2) repeated cycles of injection of the collected fractions (second-dimension), LC separations and detection of peptides by tandem mass spectrometry. Figure 1 shows a schematic diagram of the 2D-LC system. The first-dimension separation was performed on a 15 cm × 300 μm i.d. strong cation-exchange column (SCX). After injection of 10 pmol of tryptic peptides from transferrin, bovine serum albumin, β-galactosidase, alcohol dehydrogenase, lysozyme, and cytochrome c, a salt gradient from 0–600 mM NaCl in 5 mM phosphate buffer pH 3 + 5% ACN was applied in 20 min at a flow-rate of 6 μL/min. Detection was achieved with a 45 nL flow cell at 214 nm. Fractions were collected every minute from 10–30 min. The second dimension separation included on-line sample preconcentration and desalting using a monolithic trap column, and separation of peptides on a PepSwift 5 cm, 200 μm i.d. monolithic column applying an acetonitrile gradient from 0–36% in 0.05% TFA in 10 min. Peptides were detected by UV using a 3 nL flow cell and MS–MS detection.
Figure 1
To minimize dilution of the peptide fractions, the salt gradient was optimized such that 84% of the peptides eluted in single or adjacent fractions, resulting in the chromatogram shown in Figure 2(a). Excellent retention time precision was observed with RSD values <0.1% for three consecutive 2D-LC runs. Using a polystyrene-divinylbenzene monolithic column (PepSwift) and a steep gradient (3.6% ACN/min), a peak capacity of 125 was obtained within 10 min for the second-dimension separation. Figure 2(b) shows a second-dimension separation of the same fraction (#4) obtained in three consecutive MDLC runs. The chromatograms were obtained 12 h apart, (the time required to complete one MDLC analysis). Retention time precision measured for 16 peptides varied between 0.0 and 0.20% RSD. The protein sequence coverage determined with MASCOT was highly reproducible and varied between 43 and 75% for the samples originating from different proteins.
Figure 2
As a result of the complex nature of the sample, a special representation was developed that allows easy comparison of the different samples with Chromeleon software. (See Figure 2.) Figure 2(a) shows the first dimension separation; Figure 2(b) shows the consecutive second-dimension separations, using a visualization approach similar to the gel images obtained after 2D-gel electrophoresis (2D-PAGE). A second-dimension separation of a single fraction sampled from the first dimension separation is shown in Figure 2(c).
The UltiMate 3000 MDLC allows automated off-line 2D-LC of complex proteomic samples. The method provides high peak capacity, high resolution and excellent retention time stability.
Pepswift is a trademark and UltiMate and Chromeleon are registered trademarks of Dionex Corporation, Sunnyvale, California, USA.
HCTultra is a trademark of Bruker Daltonics Incorporated, Billerica, Massachusetts, USA.
Dionex Corporation
1228 Titan Way, Sunnyvale, California 94085, USA
tel. +1 408 737 0700 fax +1 408 730 9403
Website: www.dionex.com
Bas Dolman, Robert van Ling, Evert-Jan Sneekes, Sebastiaan Eeltink and Remco Swart, Dionex, Amsterdam, The Netherlands.
Determination of 3-MCPD and Glycidol in oil by ISO 18363-1, AOCS Cd 29c-13, DGF C-VI 18 (10)
January 28th 2025Fully automated method for 3-MCPD and Glycidol determination in edible oil by GC-MS, based on the widely used methods ISO 18363-1, AOCS Cd 29c-13, and DGF C-VI 18 (10). The automated GC-MS determination of 3-MCPD and glycidol in edible oils with evaporation step and GC column backflush ensures low LODs by eliminating excess derivatization reagent for improved method stability and system ruggedness.
Determination of 3-MCPD, 2-MCPD and Glycidol in oil and fat by ISO 18363-4 Zwagerman/Overman
January 28th 2025Fully automated method for 3-MCPD, 2-MCPD and Glycidol determination in Edible Oil and Fat based on ISO 18363-4 - Zwagerman/Overman with validation data. A recent upgrade to PTV injection has further improved the quality and robustness of results. Fatty acid esters of 3- and 2-monochloropropanediol (3-MCPD-e, 2-MCPD-e) and glycidol (Gly-e) are process contaminants that are formed, for example, when edible oils and fats are refined. After ester cleavage during digestion in the human body they pose a relevant health risk and therefore need to be determined in edible oils and fats and in fat containing food.
Automated Analysis of MOSH/MOAH in food and packaging extracts by LC-GC-FID
January 28th 2025The AppNote describes the fully automated determination of MOSH/MOAH in Food and Packaging extracts following DIN EN 16995. Industrial production, processing and transportation invariably put food at risk of contamination with MOSH/MOAH. To ensure a reasonable cost benefit balance, high laboratory productivity and good quality of results, leading contract laboratories increasingly strive to automate their processes. An example is the determination of MOSH/MOAH using a LC-GC-FID Coupling Platform. Depending on the sample matrix, additional automated sample preparation by aluminum oxide clean-up, epoxidation, and/or saponification is necessary prior to analysis. The dedicated evaluation software integrates the complex MOSH/MOAH chromatograms accurately and reproducibly.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.