Author


Alain Wuethrich

Latest:

Electrophoretic Concentration—A Simple and Green Approach for Sample Preparation

We explain the principles of EC and demonstrate its use to enrich anionic pollutants and cationic drugs in environmental samples.


S. Rauser

Latest:

Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis

A summary of the most recent advances in sample preparation, instrumentation, and data-processing techniques for MALDI-IMS


Edgar Nägele

Latest:

Analysis of Highly Polar Compounds by SFC–MS

This application note demonstrates the development of an SFC separation method for 46 highly polar compounds on different columns using an increased amount of modifier.


Julia. A. Griffen

Latest:

Quantification of Tablets Containing Multiple APIs Using Transmission Raman Spectroscopy

The ability to predict multiple constituents of a final dosage form in one fast, nondestructive measurement can reduce analysis time and cost significantly.


Andrew. W. Owen

Latest:

Quantification of Tablets Containing Multiple APIs Using Transmission Raman Spectroscopy

The ability to predict multiple constituents of a final dosage form in one fast, nondestructive measurement can reduce analysis time and cost significantly.


Sebastian Köb

Latest:

Applying LC with Low-Resolution MS/ MS and Subsequent Library Search for Reliable Compound Identification in Systematic Toxicological Analysis

Systematic toxicological analysis is an important step in medicolegal investigations of death, poisoning, and drug use. The primary goal is the detection and confirmation of potentially toxic compounds in evidence. This article describes a workflow using nontargeted liquid chromatography–tandem mass spectrometry (LC–MS/MS) for reliable compound identification.


Magnus Klarqvist

Latest:

A Test Mixture for Performance Verification of Multi-User UHPLC–MS Instruments

Chromatographic techniques with mass spectrometric detection are important enablers in modern drug discovery. With the development of robust instrumentation and implementation of user-friendly software (or software packages), non-expert users can now walk up to easily accessible advanced chromatographic systems and perform experiments at their own convenience. Although remarkable improvements in robustness and ease-of-use have happened since the introduction of the first high performance liquid chromatography–mass spectrometry (HPLC–MS) systems, the instrument performance still needs to be qualified and monitored to ensure consistent high-quality results. This article will demonstrate how a simple test mixture of carefully selected compounds can facilitate both the development of generic ultrahigh-pressure liquid chromatography–mass spectrometry (UHPLC–MS) methods and automated performance monitoring of multiple instruments located in separate laboratories and buildings.


Tomas Leek

Latest:

A Test Mixture for Performance Verification of Multi-User UHPLC–MS Instruments

Chromatographic techniques with mass spectrometric detection are important enablers in modern drug discovery. With the development of robust instrumentation and implementation of user-friendly software (or software packages), non-expert users can now walk up to easily accessible advanced chromatographic systems and perform experiments at their own convenience. Although remarkable improvements in robustness and ease-of-use have happened since the introduction of the first high performance liquid chromatography–mass spectrometry (HPLC–MS) systems, the instrument performance still needs to be qualified and monitored to ensure consistent high-quality results. This article will demonstrate how a simple test mixture of carefully selected compounds can facilitate both the development of generic ultrahigh-pressure liquid chromatography–mass spectrometry (UHPLC–MS) methods and automated performance monitoring of multiple instruments located in separate laboratories and buildings.


Ayda Babapour

Latest:

A Test Mixture for Performance Verification of Multi-User UHPLC–MS Instruments

Chromatographic techniques with mass spectrometric detection are important enablers in modern drug discovery. With the development of robust instrumentation and implementation of user-friendly software (or software packages), non-expert users can now walk up to easily accessible advanced chromatographic systems and perform experiments at their own convenience. Although remarkable improvements in robustness and ease-of-use have happened since the introduction of the first high performance liquid chromatography–mass spectrometry (HPLC–MS) systems, the instrument performance still needs to be qualified and monitored to ensure consistent high-quality results. This article will demonstrate how a simple test mixture of carefully selected compounds can facilitate both the development of generic ultrahigh-pressure liquid chromatography–mass spectrometry (UHPLC–MS) methods and automated performance monitoring of multiple instruments located in separate laboratories and buildings.


Niklas Falk

Latest:

A Test Mixture for Performance Verification of Multi-User UHPLC–MS Instruments

Chromatographic techniques with mass spectrometric detection are important enablers in modern drug discovery. With the development of robust instrumentation and implementation of user-friendly software (or software packages), non-expert users can now walk up to easily accessible advanced chromatographic systems and perform experiments at their own convenience. Although remarkable improvements in robustness and ease-of-use have happened since the introduction of the first high performance liquid chromatography–mass spectrometry (HPLC–MS) systems, the instrument performance still needs to be qualified and monitored to ensure consistent high-quality results. This article will demonstrate how a simple test mixture of carefully selected compounds can facilitate both the development of generic ultrahigh-pressure liquid chromatography–mass spectrometry (UHPLC–MS) methods and automated performance monitoring of multiple instruments located in separate laboratories and buildings.



Michael Dong

Latest:

A Universal Generic (U)HPLC Reversed-Phase Gradient Method for Quality Assessments of Multiple Small Molecule Drugs

This is the third in a series of articles exploring current topics in separation science that will be addressed at the HPLC 2019 conference in Milan, Italy, from 16–20 June.


Jérémie Giorgetti

Latest:

Advanced Antibody–Drug Conjugate Structural Characterization by Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry Using Complementary Approaches

With this method, a single injection was sufficient to characterize the amino acid sequence with complete sequence coverage. In addition, glycosylation and drug-loaded peptides could be identified from MS/MS spectra. A drug-loaded peptide fragmentation mass spectra study yielded drug-specific fragments, which reinforced the confidence about the identifications. The results reveal the ability of the sheathless CZE–MS/MS method to characterize an ADC’s primary structure in a single experiment.


S. Meding

Latest:

Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis

A summary of the most recent advances in sample preparation, instrumentation, and data-processing techniques for MALDI-IMS


Y. Watabe

Latest:

SFC or (U)HPLC? Why Not Try Both...

Projects in drug discovery and safety constantly aim at development of novel and safer drugs, therapeutics, and diagnostics. During active pharmaceutical ingredient (API) development, drug stereoisomerism is recognized as an issue having clinical and regulatory implications. Enantiomers have essentially identical physical and chemical properties, while potentially showing large differences in toxicity.


H. Terada

Latest:

SFC or (U)HPLC? Why Not Try Both...

Projects in drug discovery and safety constantly aim at development of novel and safer drugs, therapeutics, and diagnostics. During active pharmaceutical ingredient (API) development, drug stereoisomerism is recognized as an issue having clinical and regulatory implications. Enantiomers have essentially identical physical and chemical properties, while potentially showing large differences in toxicity.


Bernd Renger

Latest:

Why System Suitability Tests Are Not a Substitute for Analytical Instrument Qualification (Part 3): Performance Qualification (PQ)

A look at the role of system suitability tests (SSTs) during performance qualification (PQ).




Wen-ting Ling

Latest:

Determination of Clenbuterol-Like Beta-Agonist Residues in Hair

A sensitive and selective liquid chromatography spectrometry mass spectrometry (LC–MS–MS) method to determine clenbuterol-like beta agonist residues in human hair was developed and validated.


Mike Adams

Latest:

Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

A primary impediment to cannabinoid research is the fact that materials possessing psychoactive Δ-9-tetrathydrocannabinol are considered Schedule I drugs as defined in the U.S. Controlled Substances Act. An alternative source of cannabinoids may be found in hemp oil extracts. Hemp contains a low percentage of Δ-9-tetrathydrocannabinol (THC) by weight but relatively high amounts of non-psychoactive cannabinoids. The liquid chromatography-time of flight mass spectrometry (LC-TOF) method presented herein allows for the accurate, precise and robust speciation, profiling and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories. The method was determined to chromatographically separate 11 cannabinoids including differentiation of Δ-8-tetrahdrocannabinol and THC with excellent linear dynamic range, specificity and sensitivity.


Rita Steed

Latest:

Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

A primary impediment to cannabinoid research is the fact that materials possessing psychoactive Δ-9-tetrathydrocannabinol are considered Schedule I drugs as defined in the U.S. Controlled Substances Act. An alternative source of cannabinoids may be found in hemp oil extracts. Hemp contains a low percentage of Δ-9-tetrathydrocannabinol (THC) by weight but relatively high amounts of non-psychoactive cannabinoids. The liquid chromatography-time of flight mass spectrometry (LC-TOF) method presented herein allows for the accurate, precise and robust speciation, profiling and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories. The method was determined to chromatographically separate 11 cannabinoids including differentiation of Δ-8-tetrahdrocannabinol and THC with excellent linear dynamic range, specificity and sensitivity.


Karen Kaikaris

Latest:

Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

A primary impediment to cannabinoid research is the fact that materials possessing psychoactive Δ-9-tetrathydrocannabinol are considered Schedule I drugs as defined in the U.S. Controlled Substances Act. An alternative source of cannabinoids may be found in hemp oil extracts. Hemp contains a low percentage of Δ-9-tetrathydrocannabinol (THC) by weight but relatively high amounts of non-psychoactive cannabinoids. The liquid chromatography-time of flight mass spectrometry (LC-TOF) method presented herein allows for the accurate, precise and robust speciation, profiling and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories. The method was determined to chromatographically separate 11 cannabinoids including differentiation of Δ-8-tetrahdrocannabinol and THC with excellent linear dynamic range, specificity and sensitivity.


Sue D’Antonio

Latest:

Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

A primary impediment to cannabinoid research is the fact that materials possessing psychoactive Δ-9-tetrathydrocannabinol are considered Schedule I drugs as defined in the U.S. Controlled Substances Act. An alternative source of cannabinoids may be found in hemp oil extracts. Hemp contains a low percentage of Δ-9-tetrathydrocannabinol (THC) by weight but relatively high amounts of non-psychoactive cannabinoids. The liquid chromatography-time of flight mass spectrometry (LC-TOF) method presented herein allows for the accurate, precise and robust speciation, profiling and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories. The method was determined to chromatographically separate 11 cannabinoids including differentiation of Δ-8-tetrahdrocannabinol and THC with excellent linear dynamic range, specificity and sensitivity.


C. Pezzei

Latest:

Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis

A summary of the most recent advances in sample preparation, instrumentation, and data-processing techniques for MALDI-IMS


The Editors of LCGC

Latest:

Celebrating 35 Years of LCGC

Leading separation scientists share their perspectives on current challenges in separation science and where the field is heading.


Michael R. Halpenny

Latest:

Analysis of Terpenes in Cannabis Using Headspace Solid-Phase Microextraction and GC–MS

As the legalization of medicinal cannabis continues to sweep across the United States, an urgent need has developed for fast, accurate and efficient analytical testing. In addition to testing for contaminants and potency, there is also interest in the determination of terpene identity and concentration levels present in different strains of cannabis. Terpenes have been shown to have therapeutic uses for treatment of different medical conditions ranging from cancer and inflammation, to anxiety and sleeplessness. It is believed that the combination of terpenes and cannabinoids in cannabis produce a synergistic effect with regards to medical benefits. The traditional testing method for terpenes in plant materials involves a solvent-based extraction followed by GC analysis. In this work, headspace solid phase microextraction (HS-SPME) was used to identify and quantify terpene content in cannabis. The HS-SPME method provided several advantages over solvent extraction in that it provided a cleaner analysis, free of interferences from co-extracted matrix, and was non-destructive to the sample. A cannabis sample of unknown origin was first analyzed qualitatively by HS-SPME and GC-MS. Spectral library matching and retention indices were used to identify 42 different terpenes. Quantitative analysis was then performed for several selected terpenes using spiked samples. Method accuracy was >90%, with reproducibility of


Gordon Fagras

Latest:

Evaluation of Modified QuEChERS for Pesticide Analysis in Cannabis

While systems for growing, production and sale of cannabis and cannabis related products are well established, regulation and enforcement of quality and safety testing have lagged behind. However, state governments and private labs are focusing on product safety testing with special emphasis on pesticide analysis. This is partially the result of various product recalls, media attention and concern from patient advocacy groups. We evaluated a modified QuEChERS LC-MS/MS method for analysis of multiresidue pesticides. The AOAC QuEChERS method was used for a reduced 1.5 g amount of plant material and processed with a universal dSPE formulation. LC-MS/MS analysis used constant polarity switching ESI and monitored at least two transitions per analyte. Matrix-matched calibration was used for quantitation and both method and instrument internal standards were used. Analyte recovery validation was performed according to FDA guidelines by testing three matrices at three fortification levels in triplicate for over 200 pesticides. For the large majority of pesticides, in all three matrices and at all three fortification levels, recovery was between 70-120%.


Jeffrey H. Dahl

Latest:

Evaluation of Modified QuEChERS for Pesticide Analysis in Cannabis

While systems for growing, production and sale of cannabis and cannabis related products are well established, regulation and enforcement of quality and safety testing have lagged behind. However, state governments and private labs are focusing on product safety testing with special emphasis on pesticide analysis. This is partially the result of various product recalls, media attention and concern from patient advocacy groups. We evaluated a modified QuEChERS LC-MS/MS method for analysis of multiresidue pesticides. The AOAC QuEChERS method was used for a reduced 1.5 g amount of plant material and processed with a universal dSPE formulation. LC-MS/MS analysis used constant polarity switching ESI and monitored at least two transitions per analyte. Matrix-matched calibration was used for quantitation and both method and instrument internal standards were used. Analyte recovery validation was performed according to FDA guidelines by testing three matrices at three fortification levels in triplicate for over 200 pesticides. For the large majority of pesticides, in all three matrices and at all three fortification levels, recovery was between 70-120%.


Derek Laine

Latest:

Optimization of Sample Preparation for Pesticide Analysis in Oil-Based Cannabis Products Using LipiFiltr®

This application note outlines the performance benefits achieved with UCT’s LipiFiltr® cleanup cartridge for the analysis of pesticides in oil-based cannabis products using LC–MS/MS analysis.