How Close is Close Enough? Accuracy and Precision
March 1st 2007The accuracy and precision of results in gas chromatography and other analytical techniques are highly dependent upon the sample and its preparation, the instrumentation, accessories and operating conditions, as well as operator skill and experience. For these reasons, accuracy and precision for a specific methodology can be expected to vary from one laboratory or operator to another. This month, we look at statistical analysis as a diagnostic tool.
Setting Realistic Expectations for GC Optimization
March 1st 2007Setting realistic expectations requires a good working knowledge of an instrument's capabilities in terms of the sample requirements as well as an understanding of the effects of real-world samples and their matrices on long-term instrument performance.
How Close is Close Enough? Accuracy and Precision
December 1st 2006The accuracy and precision of results in gas chromatography and other analytical techniques are highly dependent upon the sample and its preparation, the instrumentation, accessories and operating conditions, as well as on operator skill and experience. For these reasons, accuracy and precision for a specific methodology can be expected to vary from one laboratory or operator to another. This month, we look at statistical analysis as a diagnostic tool.
Setting Realistic Expectations for GC Optimization
November 1st 2006November 2006. This month, John Hinshaw addresses questions of instrument capabilities and chromatographers' expectations. In subsequent issues, he will discuss adjustment of hardware settings, optimization of column parameters, and data-handling issues. This is the first article in the recently released "GC Connections Resource Guide."
How Close is Close Enough? Accuracy and Precision
September 1st 2006September 2006. The accuracy and precision of results in gas chromatography and other analytical techniques are highly dependent upon the sample and its preparation, the instrumentation, accessories, and operating conditions, as well as on operator skill and experience. For these reasons, accuracy and precision for a specific methodology can be expected to vary from one laboratory or operator to another. This month, we look at statistical analysis as a diagnostic tool.
The Thermal Conductivity Detector
June 1st 2006Thermal conductivity detectors have been in use since before the beginning of gas chromatography. Essential for fixed-gas detection - no substitute has the same ease of use and stability - thermal conductivity detectors are also employed when the auxiliary or combustion gases required by flame ionization or other detectors are unsafe or impractical. Although they cannot match the sensitivity of ionization detectors, thermal conductivity detectors are the third most used detector, surpassed only by flame ionization and bench-top mass-spectrometry detectors. This month's instalment of "GC Connections" takes a look at the operating principles and inner workings of the thermal conductivity detectors.
The Thermal Conductivity Detector
January 1st 2006Thermal conductivity detectors have been in use since before the beginning of gas chromatography. Essential for fixed-gas detection - no substitute has the same ease of use and stability - thermal conductivity detectors also are employed when the auxiliary or combustion gases required by flame ionization or other detectors are unsafe or impractical. Although they cannot match the sensitivity of ionization detectors, thermal conductivity detectors are the third most used detector, surpassed only by flame ionization and bench-top mass-spectrometry detectors. This month's installment of "GC Connections" takes a look at the operating principles and inner workings of the thermal conductivity detectors.
Flow, Pressure and Temperature Calibration: Part 2
March 1st 2005In the concluding part of this series, the effects that column variability has on isothermal capillary gas chromatography is discussed and instrument calibration explored. The goal is to reduce the normal variability that occurs when working with multiple instruments and columns to ensure consistent results.