Researchers have developed two new methods for the analysis of MOAHs in highly purified mineral oil fractions (white oils) using comprehensive AgLC×GC, one method uses FID, while the other uses VUV.
Photo Credit: prasongtak/stock.adobe.com
Researchers have developed two new methods for the analysis of mineral oil aromatic hydrocarbons (MOAHs) in highly purified mineral oil fractions (white oils) using comprehensive off-line silver phase liquid chromatography×gas chromatography (AgLC×GC), one method uses flame ionization detection (FID), while the other uses vacuum ultraviolet detection (VUV) (1).
White oils are widely used for moisture control and skin protection across the cosmetics industry, as well as a water loss barrier in food such as fruits and candies. Unfortunately, if the oils are insufficiently purified they can contain excessive levels of residual MOAHs. This is an issue because larger MOAH species containing 3–7 fused aromatic rings are suspected to induce DNA damage making them mutagenic, carcinogenic, and genotoxic (2–5). To address this methods are necessary to evaluate the level of purification in white oils as well as determine the total level of MOAHs in the oils and characterize the MOAH species.
Current methods rely heavily on the separation of mineral oil saturated hydrocarbons (MOSH) prior to quantification, however, partial coelution when attempting to separate using normal-phase LC hampers the method, and further updates to the method have also identified problems related to tailing in the MOSH fraction, a result of dead volume.
To address these issues, researchers developed a comprehensive AgLC×GC method with detection being performed by FID or VUV. The benefit of VUV detection is structural information of the molecules based upon their VUV spectra. This method offered specific advantages including eliminating the need for markers to determine MOSH/MOAH separation cutâpoint, the use of silver-based stationary phases in the first dimension, which gives a group-type separation of the mineral oil according to the degree of aromaticity, and the aforementioned structural data from VUV detection.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.