Researchers attempting to overcome complex matrix interference in commercial food analysis have developed a targeted LC–MS/MS method and open source analysis software capable of identifying allergens in complex food matrices.
Photo Credit: missbobbit/stock.adobe.com
Researchers attempting to overcome complex matrix interference in commercial food analysis have developed a targeted liquid chromatography tandem mass spectrometry (LC–MS/MS) method and open source analysis software capable of identifying allergens in complex food matrices (1).
With an estimated 5% of adults and 8% of children being affected by food allergies (2), the conundrum of food selection is a common occurrence for many people. Between the potential dire consequences of eating the wrong product and the desire to identify and consume food without too much of a thought process lies the daily battle with food labelling. Thankfully, with many countries legislating for more detailed food allergen labelling, this battle has been made significantly easier. However, the potential for contamination during agricultural or manufacturing processes remains. This is despite the increase in allergen control plans by manufacturers, who have also, in their desire to play it safe, adopted precautionary allergen labelling (PAL). These PALs have led to a lot of confusion among consumers, with many ignoring these precautionary labels all together under the assumption that the risk is low (3–6). These PALs represent a failure when it comes to allergen detection and should be replaced with labelling more representative of the actual risk of allergen presence.
To address this issue and better understand allergen contamination, sensitive and robust methods are required to quantify allergens in commercial foods. Current methods often use targeted LC–MS/MS in multiple reaction monitoring (MRM) mode. While significant improvements have been made to the methods using this technique, problems still exist with regards to interference and matrices. Understanding the effects of interference for allergen detection is critical because ingredients possess unique profiles that, when combined into food and modified through processes such as baking, result in innumerable potential matrices. The use of stable isotope labelled (SIL) peptide analogues prior to injection can help with these issues, however, this is not yet commonplace (1). To correct this shortfall in knowledge, researchers used a computational approach to investigate interference from diverse food matrices and applied this to help understand the patterns of allergen contamination in commercial foods with and without PALs. In the process they developed a freely available, open source software package called Matrix-Dependent Interference Correction (MADIC). The program identifies interference and, when applied to a method targeting 14 allergens, among 84 unique food products, found numerous patterns of allergen contamination, such as wheat in grains or milk in chocolate containing products, among others.
References
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.