The analysis of crude oil by means of different atmospheric pressure ionization (API) techniques is described. Crude oil is analysed without any separation prior to API-Fourier transform mass spectrometry. The use of a quadrupole/hexapole device to selectively enhance a certain mass range is demonstrated. Automated generation of molecular formulas from accurate mass measurements enables rapid compound identification.
Leslie Ettre is joined by Peter J.T. Morris as the duo discusses the work of James E. Lovelock, which eventually led to the invention of the electron-capture detector.
Potentiometry is a new detection method for liquid chromatography (LC) and capillary electrophoresis (CE). The principle behind this method is familiar to chromatographers because the signals depend on the partitioning tendency of analytes over the sensor coating and the eluent. This partitioning provokes a change in the surface potential and the detection of these changes can be classified as "potentiometric". A conversion algorithm is needed to convert the generated signals to concentration-related tracings (chromatograms).
Potentiometry is a new detection method for liquid chromatography (LC) and capillary electrophoresis (CE). The principle behind this method is familiar to chromatographers because the signals depend on the partitioning tendency of analytes over the sensor coating and the eluent. This partitioning provokes a change in the surface potential and the detection of these changes can be classified as "potentiometric". A conversion algorithm is needed to convert the generated signals to concentration-related tracings (chromatograms).
State-of-the-art mass spectrometry (MS) techniques of growing importance to life sciences research now include not just liquid chromatography (LC)–MSn (n = 2–11), but also LC–matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), LC-MALDI-TOF-TOF, electrospray ionization (ESI)-TOF, and LC-Fourier transform (FT) MS.
Calibration refers to the process of determining the relation between the output (or response or signal) of a measuring instrument and the value of the input quantity or property. Depending on the univariate or multivariate character of the response (signal) used; either a univariate or a multivariate calibration is performed. The different calibration approaches are summarized in this article.
Liquid chromatography–mass spectrometry (LC–MS) is a popular technique for the analysis of wine. This article gives an overview of wine analysis and new insights this technique has revealed regarding the composition of wine, possible health benefits, customer safety and the understanding of winemaking processes.
You have purchased a new gas chromatograph. Your company's safety office has completed a review of your lab's supplies. Before setting up your gas chromatograph, you read the instructions and familiarize yourself with the instrument. You might even give some thought to the exposure risks for the various substances in your samples. Yet, what about the less visible risks inherent in the gas delivery system that makes this a gas chromatograph?
Serum protein profiling using mass spectrometry (MS) is one of the most promising approaches for biomarker identification.
This installment of "Sample Prep Perspectives" discusses techniques for the reduction/depletion of high-abundance proteins.
Potentiometry is a new detection method for liquid chromatography (LC) and capillary electrophoresis (CE). The principle behind this method is familiar to chromatographers because the signals depend on the partitioning tendency of analytes over the sensor coating and the eluent. This partitioning provokes a change in the surface potential and the detection of these changes can be classified as "potentiometric". A conversion algorithm is needed to convert the generated signals to concentration-related tracings (chromatograms).
Assay sensitivity is the lowest concentration at which a targeted analyte can be measured and is often limited by chemical background or co-eluting interferences. FAIMS in combination with liquid chromatography (LC) and zero neutral loss tandem MS was used to remove chemical background and co-eluting interferences from the analysis of linoleic acid in cancer cell extracts. Concentration of endogenous linoleic acid was determined from back-calculation of standard calibration samples fortified with deuterium-labeled linoleic acid. No internal standard was used. LC–MS-MS analysis of the cancer cell extracts resulted in an increase in signal-to-noise ratio of 10-fold. The assay sensitivity was increased 10 times over the traditional LC–MS-MS experiment exclusively due to the new FAIMS technology.
Here we describe a new compact device for electron-capture dissociation (ECD) analysis of large peptides and posttranslational modifications of proteins, which can be difficult to analyze via conventional dissociation techniques such as collision-induced dissociation (CID). The new compact device realizes ECD in a radio frequency (RF) linear ion trap equipped with a small permanent magnet, which is significantly different than the large and maintenance-intensive superconducting magnet required for conventional ECD in Fourier-transform ion cyclotron resonance mass spectrometers. In addition to its compactness and ease of operation, an additional merit of an RF linear ion trap ECD is that its reaction speed is fast, comparable to CID, enabling data acquisition on the liquid-chromatography (LC) time scale. We interfaced the linear-trap ECD device to a time-of-flight mass spectrometer to obtain ECD spectra of phosphorylated peptides injected into a liquid chromatograph, infused glycopeptides, and intact small..
Mixed mode chromatography combines aspects of ion exchange chromatography and conventional reversed-phase (RP) chromatography. The combination of both hydrophobic and ion-exchange properties allows for independent control of retention for ionizable and neutral molecules.
Emerging as a complementary analytical tool to LC-MS, LC-ICP-MS brings added value to the determination of inorganic element containing molecules of biological importance.
Measurement of chiral purity is a necessary means of quality control for drug substances that exhibit chiral centers. This article describes a simple and practical approach to setting up system suitability and validation for chiral purity assays.
Gas chromatography combined with atmospheric-pressure chemical ionization (APCI) was used to analyze high-molecular-weight phthalates.
Using HILIC with highly efficient ethylene bridged hybrid (BEH) particles results in faster methods that exhibit improved polar retention, higher sensitivity, enhanced chromatographic resolution, and significantly improved column lifetime.
The determination of the carcinogenic food processing contaminant furan by headspace sampling of foods is challenging because it can easily escape from the sample during preparation. Furan can also be easily formed as a by-product when the sample is heated in the headspace apparatus. This article describes a number of approaches to overcome these difficulties and alternative methods to quantify furan in a variety of matrices.
Potentiometry is a new detection method for liquid chromatography (LC) and capillary electrophoresis (CE). The principle behind this method is familiar to chromatographers because the signals depend on the partitioning tendency of analytes over the sensor coating and the eluent. This partitioning provokes a change in the surface potential and the detection of these changes can be classified as "potentiometric". A conversion algorithm is needed to convert the generated signals to concentration-related tracings (chromatograms).
A Deans switch, employing Agilent's Capillary Flow Technology, was configured on an Agilent 7890A GC equipped with dual ECD detectors. A method was developed for the analysis of fish oil for PCB contamination. The Deans switch was used to heart cut 7 indicator PCBs (IUPAC Numbers 28, 52, 101, 118, 138, 153 and 180) from the primary DB-XLB column on to a DB-200 column for further separation. Fish oil from a supplement capsule was simply diluted 1:10 in isooctane and injected directly. To prevent carryover, contamination and retention time shifts, the Deans switch was used to backflush the primary column at the end of each run.
The performance of lubricating oil is significantly degraded by the presence of fuel contaminants such as gasoline and diesel. Recycled oil is particularly susceptible to this form of contamination. Consequently, producers and distributors of lubricating oil must go to great lengths to ensure the levels of fuel contamination are kept to a safe limit (typically 4–5%) in these products.
A new high-throughput LC–MS/MS method meets the challenge of eliminating matrix effects for monitoring, with high specificity, polar organic pesticides such as glyphosate in food and water, while meeting targeted limits of detection.
The concept of the limit of detection (LOD) has been, and still is, one of the most controversial in analytical chemistry. The multiple definitions and calculation methods proposed have contributed to this situation. Although in the last years, several international organizations, such as ISO or IUPAC, have tried to reach a consensus in their definitions and have issued guidelines for the estimation of this important parameter in chemical analysis, the subject is still a matter of scientific debate. In this article, we try to clarify the definition and provide guidelines to estimate LOD in chromatographic methods of analysis.
The evaluation of the state of a biological sample before starting the complex analyses is a crucial step in proteomics studies. This paper compares planar polyacrylamide gel electrophoresis (SDS-PAGE) and capillary on-the-chip SDS GE (CGE-on-the-chip) in terms of the speed of analysis, sensitivity and flexibility. Snake venoms, which are heterogeneous with high bioactivity and consist mainly of proteins with a molecular weight mass range below 100 kDa, were investigated. CGE-on-the-chip was found to be a faster and more stable technique, providing more information than classical SDS-PAGE. CGE-on-the-chip was also capable of detecting many compounds over a broad molecular weight mass range whereas the SDS-PAGE is more time-consuming and provides acceptable resolution either in the very low (below 17 kDa) or in the mid- to high-molecular mass region (16–200 kDa) depending on the gel/buffer-system selected.
Potentiometry is a new detection method for liquid chromatography (LC) and capillary electrophoresis (CE). The principle behind this method is familiar to chromatographers because the signals depend on the partitioning tendency of analytes over the sensor coating and the eluent. This partitioning provokes a change in the surface potential and the detection of these changes can be classified as "potentiometric". A conversion algorithm is needed to convert the generated signals to concentration-related tracings (chromatograms).
Accurate mass measurements are a key element of chemical characterization. However, the accepted mass accuracy tolerance of 3–5 ppm can still leave significant ambiguity in the proposed chemical formula. Consequently a further input from other analytical techniques such as NMR or MS/MS, along with some judgment based on the synthetic history is often required to arrive at a confident formula assignment.
An effective metabolite identification study should ideally include both qualitative and quantitative information that for both identifying metabolites, and determining the rate of clearance and the metabolic routes of the parent drug. Liquid chromatography–mass spectrometry (LC–MS) is considered the standard analytical technique for metabolite identification studies. To date, however, qualitative and quantitative information has always been obtained from two separation platforms: quadrupole time-of-flight (QTof) MS for the exact mass full-scan qualitative study, and tandem quadrupole MS for the multiple reaction monitoring (MRM) quantitative study. With advancements to QTof instrumentation, specifically, recent improvements in sensitivity and dynamic range, it is now possible to perform both qualitative and quantitative experiments on a single QTof mass spectrometer. This article describes a workflow that allows simultaneous qualitative and quantitative metabolite identification studies to be..