The Application Notebook
Shimadzu Europa GmbH
According to the World Health Organization (WHO), heart disease is the number one cause of death worldwide. As a result, medication for heart treatment is counted among the most frequently prescribed therapeutic classes. While most prescription drugs can cause some adverse reaction in a patient, side effects of cardiovascular agents can be particularly hard to manage. There may only be a subtle distinction between a therapeutic dose and a life-threatening one. Therefore, efficient drug monitoring is an important tool in enhancement of drug efficacy and reduction of the risk of toxic effects resulting in a balanced treatment.
With the advance of highly sensitive and fast liquid chromatography tandem mass spectrometry (LC–MS–MS) instruments, triple quadrupole technology has found its way into clinical drug monitoring. It is the preferred technique for an increasing number of applications in the clinical sector, demanding fast and efficient development of new LC–MS–MS methods. Fast ultrahigh-pressure liquid chromatography (UHPLC) screening using Shimadzu's specialized scouting software in combination with automated MS optimization for multiple reaction monitoring (MRM) parameters are the perfect platform for rapid generation of dedicated analytical procedures.
For UHPLC method scouting, a Shimadzu Nexera X2 Method Scouting System was used, consisting of two quaternary solvent pumps (LC-30AD), an autosampler (Sil-30AC), and a column oven (CTO-20AC) including a six-column switching valve (FCV-34AH). The system was also equipped with a Shimadzu LCMS-8040 triple quadrupole mass spectrometer via an electrospray ionization (ESI) source.
Figure 1: Structures of cardiovascular drugs.
The method scouting system enables screening of a maximum of six HPLC columns with up to 16 different eluents. The different mobile and stationary phases used for method scouting for the separation of eight cardiovascular drugs are displayed in Table 1.
Table 1: Mobile and stationary phases used in method scouting.
For automated generation of an optimized MRM method the first step is selection of the precursor ion, followed by mass-to-charge ratio (m/z) adjustment of the precursor. The collision energy is optimized for the most abundant fragments and finally the fragment m/z is adjusted. These optimization steps were performed via flow injection analysis, each taking 30 s (Figure 2).
Figure 2: Automated multiple reaction monitoring (MRM) optimization on the LCMS 8040.
Method scouting was performed in a 30 h sequence using 5 min and 2 min gradient runs with varying gradient slope and all possible combinations of aqueous and organic mobile phases on the six columns specified in Table 1.
A total of 162 different chromatographic conditions were evaluated for the best separation and peak intensities (Figure 3).
Final method:
Column: Synergie 2.5μ Hydro-RP, 100 × 2.00 mm (Phenomenex)
Flow rate: 0.4 mL/min
Temperature: 50 °C
Solvent A: 5 mM Ammonium acetate, pH 8
Solvent B: Methanol
Gradient: 30–85%B in 5 min, 5.01 min to 95%B, 3 min hold, 2 min post time
Figure 3: (a) Shim-pack C18, 5â95% BA in AC in 5 min; (b) Synergie Hydro-RP, 25â85% BB in AB in 2 min; (c) Synergie Hydro-RP, 30-85% BB in AB in 5 min.
The Nexera X2 method scouting system in combination with Shimadzu's ultrafast LCMS 8040 triple quad mass analyser is a unique tool for quick and efficient development of LC–MS–MS applications. Chromatographic separation of eight cardiovascular drugs as well as their identification and quantification was established successfully within two working days.
Shimadzu Europa GmbH
Albert-Hahn-Str. 6–10, D-47269 Duisburg, Germany
Tel: +49 203 76 87 0 fax: +49 203 76 66 25
E-mail: shimadzu@shimadzu.com
Website: www.shimadzu.eu
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.