The Application Notebook
Bruker Daltonics
The ability to simultaneously collect quantitative and qualitative information from a DMPK analysis has the potential to significantly increase productivity in pharmaceutical drug discovery and development. We present a single workflow allowing P450 drug clearance values to be determined as well as metabolites identified, profiled, and their structures elucidated. To be able to do all of this on a high throughput UHPLC chromatographic timescale is essential for the high levels of productivity required for today's DMPK screening laboratories. Haloperidol provides a good example of what can be achieved.
C21H23NO2FCl M+H+ = 376.1474
Figure 1: In a single workflow, data dependent MSâMS spectra identify and elucidate metabolite structures and drug clearance is measured.
Microsomal incubations were carried out by Unilabs Bioanalytical Solutions at 1 µM drug concentration and a protein concentration of 0.5 mg/mL. Aliquots were taken and quenched with acetonitrile containing propranolol as an internal standard at eight time points over a period of 60 min.
Figure 2: Metabolite detection software compares the data file for the drug (in this case t60) with the corresponding control sample. A base peak chromatogram of the difference is created allowing the metabolites to be easily observed and their mass determined to four decimal places.
Column: Fortis, 1.7 µm, H2O, 2.10 mm × 30 mm
Column temperature: 30 °C
MPA: 0.1% formic acid in 95% H2O/CH3CN
MPB: 100% CH3CN
Gradient: 0.0 0.3 2.0 2.5 2.6 3.0 min
MP %: 95 95 5 5 95 95 %
Flow rate: 300 µL/min
Injection volume: 5 µL
The high surface area and lipophilic ligand combined with a hydrophilic end cap give this stationary phase a broad selectivity and resolving power for the target drug and the metabolites. The use of small particles allows UHPLC to compress the peak into a tighter and taller peak, therefore enhancing detection of very low level analytes.
Figure 3: Time profiles for the disappearance of haloperidol and the appearance of three metabolites.
Metabolite detect software compares the data file for the drug (in this case t60) with the corresponding control sample. A base peak chromatogram of the difference is created allowing metabolites m/z 354, 212, and even 392 to be easily observed.
Metabolite detection software is able to detect the m/z = 392 metabolite even though it co-elutes with the internal standard.
Figure 4: Linear calibration of 50 pg/mL to 50 ng/mL (3 decades) was achieved using the XIC for the measured m/z of each metabolite ± 0.005 Da. R2= 0.9974.
Integration is carried out on the XIC for the measured m/z of each metabolite ± 0.005 Da. Plotting the ratio of metabolite to internal standard (M/IS) versus time produces the metabolite profiles. Half-life and clearance values are determined from the natural log (ln) of the drug profile versus time plot.
Figure 5: The structure of metabolite m/z = 354 is easily identified using Smartformula3D to understand the fragmentation pattern
MS–MS data was not available for m/z = 392 because of co-elution with the internal standard. The high quality data available, even for such a small peak, means SmartFormula is still able to predict the formula and deduce that it is a mono-oxidative metabolite.
m/z = 392.2422 Δm = 0.1 mDa (0.3 ppm)
C21H23 NO3 FCl Isotope fit = 23 ms
Figure 6: The structure of metabolite m/z = 392 is easily identified using Smartformula3D to understand the fragmentation pattern
Both the AB Sciex API 5000 and Bruker impact QTOF yield equivalent results for the clearance values. This can be clearly seen by comparing the ln [Drug]/[IS] versus time plots.
Figure 7: Clearance data from impact.
The linearity and gradients of these plots are nearly identical and result in values for t½ of 45 and 47 min, respectively.
The difference in y intercept is a result of a difference in relative response of the internal standard and has no influence on the clearance results.
Figure 8: Clearance data from 3Q.
The Quan–Qual workflow is effective and robust using a rapid analytical method suitable for high throughput screening at 1 µM drug concentrations.
Metabolite detection software allows metabolites to be rapidly identified and profiled even when compounds co-elute.
Bruker Daltonics Inc.
40 Manning Road, Billerica, Massachusetts, USA
Tel: (978) 663 3660 fax: (978) 667 5993
Website: www.bruker.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.