Polysaccharide-based chiral stationary phases (CSP) are widely used due to their wide chiral recognition ability. Several cellulose and amylose derivatives are extremely effective in the separation of a wide range of compounds of interest in the pharmaceutical industry.1 This work demonstrates the different chiral recognition capabilities of CSPs based on cellulose tris(3-chloro-4-methylphenylcarbamate) and cellulose tris(3,5-dimethylphenylcarbamate). Over 180 racemates of pharmaceutical interest were analysed on these two phases in normal (NP), polar-organic (PO) and reversed phase (RP) separation modes. Numerous examples including important classes of drug compounds as well as statistical data prove that cellulose tris(3-chloro-4 methylphenylcarbamate) offers a good alternative to the commonly used cellulose tris(3,5-dimethylphenylcarbamate) in the separation of difficult racemic mixtures.
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.