The Application Notebook
Gel permeation chromatography (GPC), also known as size-exclusion chromatography (SEC), provides an easy and effective way to measure the molar mass distribution and the amount of free, unbound polysaccharide in iron polysaccharide complexes.
Iron is an essential nutrient in the human body. In case of iron deficiency, complexes of a polysaccharide and iron are applied as drugs to enhance low iron levels. Suitable characterization of these complexes and their formulations are mandatory for regulatory reasons, quality control, and research. In the present investigation, iron polysaccharide complexes from different sources were analyzed on a GPC/SEC system with simultaneous ultraviolet/refractive index (UV/RI) detection.
Experimental Conditions:
GPC/SEC was performed using a PSS BioSECcurity SEC system
PSS SUPREMA, 5 µm, 30 Å + 2 ×1000 Å (8 × 300 mm, each)
PSS SUPREMA precolumn
Results and Discussion:
Figure 1 shows the overlay of the UV-chromatograms of the four different samples A, B, C, and D, while the inset of the figure shows the overlay of the simultaneously measured RI-traces for two of the samples (A and B), which show nearly identical UVâtraces.
Figure 1: Comparison of the UV-traces of four different iron dextran samples used to determine the molar mass distribution of the iron complexes. While the UV-signals for samples A and B are nearly identical, the inset displaying the RI-traces shows that these samples differ in the amount of unbound polysaccharide.
An advantage of this application is that the iron polysaccharide complex is selectively detected by the UV-detector operated at 254 nm (20–26 mL). All complexes reveal well shaped nearly Gaussian peak shapes, indicating that the PSS SUPREMA column combination is ideal for this molar mass separation range. By applying a calibration curve, established using PSS pullulan standards, the relative molar mass distributions as well as the molar mass averages and the polydispersities are derived.
While UV-detection is sufficient to differentiate between three of the four samples, samples A and B render identical elution profiles. However, when comparing the RI-traces of both samples, it becomes clear that sample A contains a significantly higher amount of the unbound polysaccharide.
We can therefore conclude that GPC/SEC with UV- and RIâdetection does not only allow the molar mass distribution of iron polysaccharide complexes to be determined, but also provides information on the amount of free, unbound polysaccharide ensuring a more comprehensive characterization of the samples.
PSS Polymer Standards Service GmbH
In der Dalheimer Wiese 5, D-55120 Mainz, Germany
Tel: +49 6131 962390 fax: +49 6131 9623911
E-mail: info@pss-polymer.com
Website: www.pss-polymer.com
Analyzing Bone Proteins in Forensic Laboratories Using LC−MS/MS
November 4th 2024A recent study compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC–MS/MS), including an in-StageTip protocol previously optimized for forensic applications, and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. LCGC International discussed this work with Noemi Procopio of the School of Law and Policing and the Research Centre for Field Archaeology and Forensic Taphonomy at the University of Central Lancashire (UK), corresponding author of the paper that resulted from this study.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Profiling Volatile Organic Compounds in Whisky with GC×GC–MS
November 1st 2024Researchers from Austria, Greece, and Italy conducted a study to analyze volatile organic compounds (VOCs) present in Irish and Scotch whiskys using solid-phase microextraction (SPME) Arrow with comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to examine the organoleptic characteristics that influence the taste of spirits.