The Application Notebook
Gel permeation chromatography (GPC), also known as size-exclusion chromatography (SEC), provides an easy and effective way to measure the molar mass distribution and the amount of free, unbound polysaccharide in iron polysaccharide complexes.
Iron is an essential nutrient in the human body. In case of iron deficiency, complexes of a polysaccharide and iron are applied as drugs to enhance low iron levels. Suitable characterization of these complexes and their formulations are mandatory for regulatory reasons, quality control, and research. In the present investigation, iron polysaccharide complexes from different sources were analyzed on a GPC/SEC system with simultaneous ultraviolet/refractive index (UV/RI) detection.
Experimental Conditions:
GPC/SEC was performed using a PSS BioSECcurity SEC system
PSS SUPREMA, 5 µm, 30 Å + 2 ×1000 Å (8 × 300 mm, each)
PSS SUPREMA precolumn
Results and Discussion:
Figure 1 shows the overlay of the UV-chromatograms of the four different samples A, B, C, and D, while the inset of the figure shows the overlay of the simultaneously measured RI-traces for two of the samples (A and B), which show nearly identical UVâtraces.
Figure 1: Comparison of the UV-traces of four different iron dextran samples used to determine the molar mass distribution of the iron complexes. While the UV-signals for samples A and B are nearly identical, the inset displaying the RI-traces shows that these samples differ in the amount of unbound polysaccharide.
An advantage of this application is that the iron polysaccharide complex is selectively detected by the UV-detector operated at 254 nm (20–26 mL). All complexes reveal well shaped nearly Gaussian peak shapes, indicating that the PSS SUPREMA column combination is ideal for this molar mass separation range. By applying a calibration curve, established using PSS pullulan standards, the relative molar mass distributions as well as the molar mass averages and the polydispersities are derived.
While UV-detection is sufficient to differentiate between three of the four samples, samples A and B render identical elution profiles. However, when comparing the RI-traces of both samples, it becomes clear that sample A contains a significantly higher amount of the unbound polysaccharide.
We can therefore conclude that GPC/SEC with UV- and RIâdetection does not only allow the molar mass distribution of iron polysaccharide complexes to be determined, but also provides information on the amount of free, unbound polysaccharide ensuring a more comprehensive characterization of the samples.
PSS Polymer Standards Service GmbH
In der Dalheimer Wiese 5, D-55120 Mainz, Germany
Tel: +49 6131 962390 fax: +49 6131 9623911
E-mail: info@pss-polymer.com
Website: www.pss-polymer.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.