The Application Notebook
Since the gas flow required for the separation step in gas chromatography is frequently lower than that required to optimize the detection, nitrogen is used as a make-up gas to increase the gas flow for detection.
Since the gas flow required for the separation step in gas chromatography is frequently lower than that required to optimize the detection, nitrogen is used as a make-up gas to increase the gas flow for detection. In many facilities, zero grade nitrogen make-up gas is provided from a cylinder or tank. While this approach works, an in-house "make-up" gas generator can provide the desired nitrogen with a higher level of purity than bottled nitrogen. In addition, the use of an in-house make-up gas generator can provide a considerably safer, more convenient, and less expensive approach to supply the required gas.
Zero grade nitrogen for make-up gas can be readily obtained from laboratory compressed air using an in-house generator (Parker Hannifin FID MakeUpGas Generator) that includes a heated catalytic converter in which a proprietary catalyst blend is combined with platinum to remove all hydrocarbons by converting them to CO2 and water vapor. The converter is followed by a hollow fiber membrane separator which preferentially allows oxygen and water vapor to quickly permeate the membrane wall while nitrogen travels through the hollow fiber out the end (Figure 1). The hollow fiber has a small internal diameter and thousands of fibers are bundled together to provide a large surface area to provide the desired flow of nitrogen. The makeup gas generator can provide nitrogen with purity of better than 99.9999% with respect to hydrocarbons (< 1 ppm) and greater than 99% with respect to oxygen.
Figure 1: Oxygen and water vapor permeate the membrane, providing high purity nitrogen.
A chromatographic comparison of the nitrogen that was produced by the MakeUpGas generator and gas that was obtained from bottled fuel air from a commercial supplier is shown in Figure 2. The gas generated by the MakeUpGas generator is much purer than that from bottled fuel air; and provides an extremely flat baseline with essentially no signal due to hydrocarbons, while the zero grade bottled air provided an irregular baseline with a significant level of hydrocarbons, which could impact the analysis.
Figure 2: The MakeUpGas generator (left figure) provides gas of significantly higher purity than bottled fuel gas (right figure).
In addition to the extremely high level of purity provided by the generator, the use of an in-house generator provides benefits in safety, cost, and convenience. When a MakeUpGas generator is employed, only a small amount of nitrogen is generated at a given instant and a leak would lead to a negligible change in the composition of the laboratory air. In contrast, a leak from a full tank could cause problems. When an in-house generator is employed, gas is available on a 24/7 basis and the possibility of injury or damage during the transportation and installation of a heavy gas tank is eliminated. In addition to the significant safety and convenience benefits, there is an economic benefit from using a MakeUpGas generator. The running cost of operation maintenance of the MakeupGas generator is extremely low; as the raw materials to prepare the required gas are air and electricity.
Parker Hannifin Corporation
Filtration and Separation Division
260 Neck Road, Haverhill MA 01835
tel. (800) 343-4048, (978) 858-0505
Website: www.parker.com/gasgeneration.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.