The Application Notebook
Burning mosquito coils is common in many countries, however, the emission of various, potentially toxic volatile organic compounds (VOCs) is cause for concern. Novel sampling equipment with TD-GC-MS is used to extract, concentrate and analyse the emissions of two burning coils and determine any potential impact on consumer health.
Lara Kelly, Markes International Ltd, Llantrisant, Rhondda Cynon Taff, UK.
Mosquito coils are a form of incense whose active ingredients are usually derived from pyrethin, a natural insecticide. When burnt, the smoke repels, paralyses or kills mosquitoes. These coils are very popular in Asia, Africa and South America; however, there has been concern about levels and potential harm of chemicals emitted, for example, polycyclic aromatic hydrocarbons (PAHs) or aldehydes [types of volatile organic compounds (VOCs) with known health effects], particularly when burned for long periods in confined or poorly ventilated areas.1 Two types of coil (one red, one black) were obtained and burnt, and their VOC emissions compared to estimate their safety.
To analyse the emissions of a particular substance, novel microscale chamber equipment provides a compact, portable unit that allows fast screening of several samples, simultaneously (Figure 1).2 For bulk emissions testing, a small amount of a sample is placed in the bottom of an individual chamber pot. Several pots can then be inserted into the micro-chamber unit set to a prescribed temperature. Emitted vapour is extracted and retained using sorbent tubes, and its VOC composition determined by GC(–MS). To obtain a comprehensive representation of the VOC emissions, thermal desorption of the extracted vapours was performed prior to GC–MS analysis. This well-established technique concentrates the VOCs from a large sample into a narrow band of vapour and efficiently injects this directly into the GC column, giving results with far higher sensitivity, therefore, allowing more reliable compound identification.
Figure 1: A micro-chamber sampling unit with six chambers.
Sections (~40 mm) of both red and black mosquito coils were cut and lit. These were then placed inside individual micro-chamber pots (constructed from inert-coated stainless steel), which were inserted into the micro-chamber sampling unit and sealed. The samples were left to equilibrate for 10 min under a constant flow of dry air (to ensure lit samples were not extinguished). A conditioned TD tube containing a combination of sorbents (allowing the retention of a broad range of analytes) was placed on the outlet port of each of the chambers, with a diffusion locking cap (Markes International Ltd, UK) on the non-sampling end to allow air flow and prevent contaminant ingress. The tubes were removed after 30 minutes.
Following sampling, the tubes were placed onto the TD system, desorbed and then analysed by GC–MS. Full conditions are listed below.
Micro-chamber sampling:
Instrument: Micro-Chamber/Thermal Extractor (Markes International Ltd)
TD tube sorbents: Tenax TA (Buchem BV, The Netherlands) and UniCarb (Markes International)
Carrier gas: Dry air
Flow rate: 50 mL/min
Temperature: 40 ºC
Thermal desorption:
Instrument: UNITY 2 (Markes International)
Flow path: 200 ºC
Trap purge time: 1 min
Primary desorption: 10 min, 300 ºC
Trap conditions: −10 ºC, 300 ºC, hold 5 min
Trap type: Sulphur trap (Markes International)
GC–MS:
Instrument: Agilent 7890/5975
Column: Ultra 2.5% PMS, 50 m, 0.32 µm, 0.52 µm
Column flow: 1.8 mL/min, constant flow
Temperature programme: 50 ºC (2 min), ramp at 25 ºC/min to 160 ºC, then ramp at 10 ºC/min to 280 ºC, hold for 30 min
Carrier gas: He
Mass scan range: 35–300
The GC–MS data file produced was imported into TargetView (ALMSCO International, UK) software to deconvolute the data and identify compounds automatically.3
Figure 2 displays the VOC profiles of both the red and the black mosquito coils when burning. The complexity of the chromatograms gives an indication to the high chemical emissions and the efficiency of the extraction/concentration technique used. The differences between the two mosquito coils are visible; although there are many common compounds, these are often present in different abundances. TargetView, a deconvolution and identification software package, was used to automatically and quickly determine the identity of peaks in the complex data with high confidence (a match co-efficient exclusion value of > 0.7 was used); these are listed in Table 1. Compounds that are present in the red mosquito coil only are marked with an asterisk.
Figure 2: Chromatograms of VOCs from red mosquito coil (upper) and black mosquito coil (lower; inverted).
Some of the compounds found were non-toxic fragrance compounds. However, of concern, the most abundant compound emitted from the red coil, and a significant contributor to emissions of the black coil, is benzene, a known carcinogen and one linked to many serious health problems. The chromatograms also show that many other suspected carcinogens, for example, furan, ethylbenzene and naphthalene (which are categorized as IARC Group 2B carcinogens), or respiratory tract irritants, for example, benzaldehyde, tridecane and phenol, are observed in both but are more abundant in the red coil emissions. It is also interesting to note that allethrin, a synthetic pyrethroid (natural insecticide), is found only in the red coil emissions. In addition, the compound 2,3-butanedione, which is another mosquito repellent, is found at a significantly higher concentration in the red coil than the black.
Table 1: Identification of VOCs found in mosquito coil emissions (* only found in red coil).
The introduction of micro-chamber sampling technology has made in-house screening of product emissions far more accessible to manufacturers due to its simplicity, size and speed.
Via this simple yet efficient method of chemical extraction and sample concentration for GC–MS, comprehensive VOC profiles of both mosquito coils were obtained. The results suggest that though the red coil has significantly higher VOC emission levels, either coil would give cause for concern if burned for a prolonged duration in a poorly ventilated area.
1. W. Liu et al., Environmental Health Perspectives, 111(12), 1454–1460 (2003).
2. Markes International TDTS 67: Introducing the Micro-Chamber/Thermal Extractor (µ-CTE) for rapid screening of chemicals released (emitted) by products and materials.
3. Markes International TDTS 90: Automatic detection of trace target compounds in complex chemical emission profiles.
Markes International Ltd
Gwaun Elai Medi Science Campus, Llantrisant CF72 8XL, UK
tel. +44 1443 230935 fax +44 1443 231531
E-mail: lkelly@markes.com
Website: www.markes.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.