This note examines the benefits of using flash or HPLC for compound purification. Results show that flash is a viable alternative to HPLC.
Linda Lloyd, Stephen Ball and Keeley Mapp, Varian Inc. — now a part of Agilent Technologies, Church Stretton, Shropshire, UK.
With the trend towards the use of smaller sub-2 μm particle materials for analytical HPLC to run the analysis faster, one would also expect a move to these materials for purification. While high efficiency separations performed at speed are used for purification, the capital cost of high-pressure equipment and columns makes the technique unsuitable for routine purification or when larger amounts of compound are required.
There are a number of factors that need to be considered before starting an LC purification of a target compound.
In all cases, the driver for the purification will be the economics of achieving the final compound or compounds at the required purity and with acceptable recovery.
A wide range of instruments, columns and media are available for LC purification, ranging from flash to HPLC, and so we examined the advantages and disadvantages of using these techniques for compound purification.
Resolution Equation
Flash and HPLC are subsets of liquid chromatography and as such the same chromatographic theory will apply. The resolution equation (Equation 1) is applicable to both techniques. It contains three terms: efficiency, influenced by the particle size and shape of the media; selectivity, influenced by the total functionality of the media and eluents used for separation; and retention capacity, relating to the residence time of the solute in the column and influenced by the eluent composition.
R = √N/4 × [(α – 1)/α] × [K'/(1 + K)]
where N = efficiency, α = selectivity and K' = retention capacity.
Table 1: Comparison of flash LC and HPLC parameters that influence the resolution equation.
HPLC and flash columns are available with a wide range of media types. Two silica-based C18 materials were chosen in this study. The HPLC media was SepTech ST60 10-C18, a 60 Å, 10 μm spherical silica particle and the flash media was SuperFlash C18, a 60 Å, 50 μm irregular silica particle. Separation of a five-component test mix was used to assess the performance of the two materials [Figures 1(a) and 1(b)].
Figure 1: Selectivity comparison of SF10-5.5 g C18 (a) and SepTech ST60 10-C18 (b), with 60:40 MeCN/H2O.
Column A: SuperFlash SF10-5.5 g C18
Column B: SepTech ST60 10-C18
Eluent: 60:40 acetonitrile:water
As would be expected, the peak widths were much broader with the SuperFlash column but the separations appeared comparable.
Figure 2: Comparison of flash LC and HPLC parameters that influence the resolution equation.
To determine differences in resolution between the SepTech and SuperFlash materials due to contributions from selectivity and retention capacity, these values were calculated for adjacent pairs of peaks. From the comparisons shown in Figures 2 and 3, it is clear that the two materials were very similar in their chromatographic performance. The difference in resolution of the sample components was due to the difference in efficiency, because of particle size and shape, and not to compound selectivity or retention capacity.
Figure 3: Comparison of SepTech ST60 10-C18 and SuperFlash C18 retention capacity.
Flash and HPLC are sub-sets of liquid chromatography and the resolution equation of LC is applicable to both. Efficiency, selectivity and retention capacity components were evaluated for flash and HPLC media using SuperFlash C18 and SepTech ST60 10-C18 media, respectively. As expected from differences in particle shape, size and size distribution, the biggest performance variations were seen in efficiency, otherwise the media were very similar in retention and selectivity. Therefore, where purifications do not require high efficiency, flash is a viable alternative to HPLC for compound purification.
Varian Inc. — now a part of Agilent Technologies
Essex Road, Church Stretton, Shropshire SY6 6AX, UK
tel. +44 1694 723581 fax +44 1694 722171
E-mail: flashpur@varianinc.com
Website: www.varianinc.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.