Desorption and Ionization Mass Spectrometry in Research Laboratories
April 1st 2016The past decade has brought exponential growth in the number of mass spectrometry (MS) ionization techniques based on desorption and ionization (DI) processes. Here, the three key applications for DI are discussed: rapid, in situ screening; direct analysis of extracted samples or of planar chromatography spots; and scanning samples along x and y axes.
Ion-Mobility Mass Spectrometry in Metabolomics and Lipidomics
September 1st 2015Ion-mobility spectrometry (IMS) is an anlytical technique that provides for the separation of ions in the gas phase. The separation, occuring on a timescale of milliseconds, is based on the differing mobility of ions according to their charge, shape, and size. These characteristics make IMS suitable for coupling with mass spectrometry (MS), to serve in current MS-based workflows for metabolomics and lipidomics. IM-MS improves peak capacity and signal-to-noise ratios, and it provides more confidence during compound identification or confirmation than conventional analyses. Combining collision-induced dissociation with ion-mobility separation improves the specificity of MS/MS-based approaches. Significantly, ion-mobility-derived information provides an orthogonal, physicochemical parameter-the collision cross section (CCS)-which relates to a metabolite's shape. Novel hardware and software solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative metabolomics and lipidomics applications.
Ion-Mobility Mass Spectrometry in Metabolomics and Lipidomics
September 1st 2015Ion-mobility spectrometry (IMS) is an analytical technique that provides for the separation of ions in the gas phase. The separation, occuring on a timescale of milliseconds, is based on the differing mobility of ions according to their charge, shape, and size. These characteristics make IMS suitable for coupling with mass spectrometry (MS), to serve in current MS-based workflows for metabolomics and lipidomics. IMS–MS improves peak capacity and signal-to-noise ratios, and it provides more confidence during compound identification or confirmation than conventional analyses.
Metabolomics in Food and Nutrition Laboratories
April 1st 2014The potential to accurately and rapidly measure hundreds of individual molecular species provides novel opportunities for food science and nutrition. For food and nutrition researchers, metabolomics, the screening of small-molecule metabolites, enables the molecular fingerprinting of food components. This article describes the various applications, strategies, and tools related to metabolomics in food analysis.
New Frontiers for MS in Lipidomics (Part 2)
June 1st 2012Innovative technologies are rapidly helping to measure the numerous and diverse lipids present in biological samples. In this second and final instalment of the series, the authors present and discuss the use of these technologies for lipid analysis.
New Frontiers for Mass Spectrometry in Lipidomics (Part 1)
March 1st 2012This two-part column explains how lipids analysis has evolved and the variety of techniques and approaches currently used in lipidomics, including their advantages and disadvantages, such as sample preparation, separations and, of course, mass spectrometry.