Phenomenex Application Note
UHPLC columns can significantly improve chromatographic separations, but they also present unique challenges. Once the UHPLC system components are optimized, perhaps the greatest concern is protecting the column from the damaging effects of microparticulates and sample contaminants.
An ultra-high performance column protection system, specifically designed for UHPLC systems using sub-2 µm and core-shell particle columns, can be used to extend column lifetime (saving both money and time through less frequent column replacement), while minimizing system troubleshooting and downtime.
It is well known that UHPLC systems and columns require higher levels of care and attention than traditional HPLC in order to reap their full ultra-high chromatographic performance benefits. Once system components are optimized, chromatographic cleanliness is vital to maintain UHPLC performance, and column protection is compulsory. Unprotected columns may suffer from reduced performance and lifetime, and may lead to an increased need for system troubleshooting and/or downtime.
UHPLC columns packed with sub-2 µm particles tend to clog much more rapidly than traditional HPLC columns packed with larger 3 µm and 5 µm particles. This may be due to the fact that, not only is the interstitial space between the particles much smaller, but columns packed with sub-2 µm particles also use frits with a much smaller porosity compared to conventional HPLC columns. With a "tighter", more restricted flow path, any undissolved matter or particulates from the sample, the mobile phase or the system (such as micro-particulates shedding from piston seals and injection valve rotors), will quickly and irreversibly foul the UHPLC column.
An easy way to extend the performance and lifetime of UHPLC columns (either sub-2 µm fully-porous or core-shell media) is to prevent any contaminants from reaching the column by using the SecurityGuard ULTRA guard cartridge system (Figure 1).
Figure 1: Scanning electron microscopy (SEM) of contaminated and non-contaminated column inlet frit.
Presented in Figure 2 is an accelerated lifetime test using an endogenous biological matrix injected onto a coreshell column (Kinetex 2.6 µm C18 50 × 4.6 mm column). With the unprotected column (grey dots), sequential injections of the matrix lead to a steady and irreversible increase in back pressure. Without SecurityGuard ULTRA column protection, the increase in back pressure becomes exponential. This increase in back pressure will eventually lead to degraded chromatography, including band broadening and possibly peak splitting. As a result, method sensitivity, quantitation and peak identification may also be adversely affected.
Figure 2: Accelerated column lifetime test.
However, column lifetime is greatly extended by using the SecurityGuard ULTRA (red boxes). In this case, sequential injections of the matrix will still lead to an increase in pressure, but this is due to the particulates being captured in the SecurityGuard ULTRA itself, rather than in the UHPLC/HPLC column. Thus, by simply replacing the SecurityGuard ULTRA cartridge at regular intervals, back pressure returns to starting levels and effective column lifetime can be greatly extended.
Phenomenex Inc.
411 Madrid Ave., Torrance, California, USA
tel: +1 310 212 055 fax: +1 310 212 7768
Website: www.phenomenex.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.