The Application Notebook
Thermo Scientific Application Note
Fei Pang, Terri Christison and Khalil Divan, Thermo Fisher Scientific, Sunnyvale, California, USA.
The determination of common inorganic anions and cations in drinking water is important due to the toxicity of anions (e.g., fluoride, nitrite and nitrate) and secondary contaminants (e.g., chloride and sulfate) which can affect the water's aesthetics. Therefore, these secondary contaminants are monitored and primary contaminants regulated for compliance by the U.S. EPA and other agencies around the world.
Ion-exchange chromatographic determination of dissolved alkali and alkaline earth metals and ammonia in drinking water is another important application. Sodium is monitored under the U.S. EPA Safe Drinking Water Act, whereas ammonium is a required target analyte for wastewater discharge permits and is monitored in process wastewaters.
Figure 1
Capillary IC requires µL/min flow rates. Due to its low consumption of eluent, the system can remain on continuously, thereby eliminating the need for calibration prior to each use to provide a true walk-up system. The low flow rate leads to longer lifetime of consumables and smaller amount of waste, thereby reducing the overall cost of ownership.
Figure 2
The experimental setup and the sample preparation procedures are described in Application Brief 133, Thermo Fisher Scientific, Inc. (formerly Dionex Corp.).
All anions were separated and eluted within 13 min. The peak area relative standard deviations for each analyte was 0.6% when 60 injections were evaluated within 24 h. Capillary Reagent-Free IC redefines the workflow for IC analysis of inorganic anions and cations, providing enhanced mass sensitivity and ease of use. It is a fast and accurate solution for routine characterization of different water samples.
Scan to receive complete application note.
Thermo Fisher Scientific, Inc. (formerly Dionex Corp.)
1228 Titan Way, P.O. Box 3603, Sunnyvale, CA 94088, USA
tel. (408) 737-0700, fax (408) 730-9403
Website: www.thermoscientific.com/dionex
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.