The Application Notebook
Mobile-phase pH is a powerful tool in method development, particularly for separation of neutral forms of amines or other organic bases under alkaline conditions. In this study a generic, 5-min linear gradient was used to separate six basic drug compounds on a short (50 mm) PRP-C18 column.
More than 70% of all pharmaceutical drug compounds are cationic solutes that carry a formal positive charge below pH 7. Separation of these and other organic bases has historically been problematic. Ionization has a dominating effect in reversed-phase chromatography that tends to dictate retention. Consequently, the elution window for a sample of ionized amines is narrow. The task is further complicated by secondary interactions that occur between positively charged solutes and residual silanols on the column stationary phase. These secondary mechanisms of retention are the principle source for anomalous chromatographic activity, such as poor peak shape, shifts in retention times and loss of efficiency that progressively worsen over the life of the column.
Figure 1: Rapid separation of six basic drug compounds on a 50 mm PRP-C18.
The PRP-C18 is a new column designed for high-efficiency reversed phase separations under any mobile phase conditions. The stationary phase for the PRP-C18 is devoid of free silanols, does not strip, bleed, or dissolve at any pH, and therefore can be expected to perform reliably and reproducibly throughout the extended life of the column, regardless of mobile-phase conditions. Use of alkaline mobile phase (pH > 11) permits separation of basic solutes in their neutral forms. This broadens the window for elution, whereby subtle structural nuances among chemically similar compounds can be exploited to effect resolution.
Although some recent C18 columns boast stability in alkaline pH, all silica-based supports experience measurable degradation at pH > 6, where column life is still considerably shorter than if used under more favorable conditions. On the other hand, the PRP-C18 stands up to prolonged exposure to concentrations as high as 1 M NaOH and H2SO4, with no measurable decrease in performance.
Click here to view full-size graphic
In modern drug discovery science where analytical HPLC can be a bottleneck, the trend is to streamline production through the use of shorter columns with smaller particles operated at elevated flow rates. The flexibility to employ a high pH mobile phase is another valuable tool that permits separation of basic solutes in their neutral forms. Oftentimes, this greatly simplifies the process of methods development. In this study, separation of a set of structurally diverse pharmaceutical compounds is achieved on a short (50 mm) PRP-C18 column using a generic 5 min linear gradient.
Hamilton Company
4970 Energy Way, Reno, NV 89502
tel. (800) 648-5950, fax (775) 858-3026
Website: www.hamiltoncompany.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.