The Application Notebook
As medical and recreational cannabis use gains broader acceptance, regulations are being put in place to mandate the testing of consumer products containing cannabis. Legally available cannabis plant and cannabis-containing edible products are tested for the presence of pesticides, heavy metals, residual solvents, and other harmful substances. Mycotoxins is another group of contaminants that state regulations have established maximum allowed levels for. In cannabis products sold to consumers the maximum allowed levels for total aflatoxins G1, G2, B1, and B2 are set at <20 ppb and for ochratoxin A at <20 ppb.
Pickering developed an easy and sensitive method to analyze aflatoxins B1, B2, G1, G2 and ochratoxin A in cannabis plant and edible products. Mycotoxins are isolated using immunoaffinity clean-up columns and analyzed with fluorescence detection. To increase sensitivity of aflatoxins B1 and G1, an in-line photochemical reactor is installed before the detector. This method utilizes standard HPLC equipment and allows laboratories to easily determine mycotoxins at levels below the limits established by state regulations.
Isolation of Aflatoxins B1, B2, G1, G2 and Ochratoxin A
Blend 1 g of finely ground sample with extraction solution (10 mL of methanol/water 80:20, 5 mL of hexane, 0.1 g of NaCl) using a handheld homogenizer. Centrifuge for 10 min. Mix 2 mL of the aqueous layer with 12 mL of PBS buffer (pH 7.2) containing 4% of Tween 20. Apply the solution to AflaOTAClean™ Immunoaffinity column at a flow rate of 1–2 drops/sec.
Figure 1: Chromatogram of cannabis-containing peanut butter cookie sample naturally contaminated with 1.58 ng/g of aflatoxins B1 and 0.26 ng/g of B2.
Wash the column with 10 mL of water at a flow rate of 1–2 drops/s. Elute the toxins with two 1-mL portions of methanol at a flow rate of 1 drop/s. Allow 5 min before applying the second portion of the methanol to ensure complete breaking of the antibody-toxin bond.
Figure 2: Chromatogram of cannabis pre-roll sample spiked with 6 ng/g of aflatoxin B1; 1.8 ng/g of aflatoxin B2; 5.94 ng/g of aflatoxin G1; 1.8 ng/g of aflatoxins G2 and 20 ng/g of ochratoxin A.
Evaporate to dryness at 55 °C. Reconstitute in 1 mL of methanol/water 50:50. Other immunoaffinity columns, such as Vicam's AflaOchra HPLC, could be used for sample clean up as well.
Figure 3: Chromatogram of cannabis inflorescence sample spiked with 6 ng/g of aflatoxin B1; 1.8 ng/g of aflatoxin B2; 5.94 ng/g of aflatoxin G1; 1.8 ng/g of aflatoxins G2, and 20 ng/g of ochratoxin A.
Analytical Conditions
Click here to view full-size graphic
Calibration
The 5-point calibration curves were built in the ranges of 0.25–5 ppb for B1, 0.075–1.5 ppb for B2, 0.248–4.95 ppb for G1, 0.075–1.5 ppb for G2, and 1–10 ppb for ochratoxin A. Correlation coefficient R2 > 0.999 for all toxins. All calibration standards were prepared in methanol/water 50:50
Figure 4: Chromatogram of cannabis-containing chocolate chip cookie sample spiked with 6 ng/g of aflatoxin B1; 1.8 ng/g of aflatoxin B2; 5.94 ng/g of aflatoxin G1; 1.8 ng/g of aflatoxins G2 and 20 ng/g of ochratoxin A.
Flow diagram for UVE™ photochemical reactor
Click here to view full-size graphic
Pickering Laboratories, Inc.
1280 Space Park Way, Mountain View, CA 94043
tel. (800) 654-3330, (650) 694-6700
Website: www.pickeringlabs.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.